博客园 首页 私信博主 显示目录 隐藏目录 管理 动画

BZOJ.2154.Crash的数字表格(莫比乌斯反演)

BZOJ2154
BZOJ2693
洛谷

复习一下反演(虽然这题不久前刚看过,但是已经忘了=-=)。


\(Description\)

给定\(n,m\),求$$\sum_{i=1}n\sum_{j=1}m\mathbb{lcm}(i,j)$$

\(n,m\leq10^7\)

\(Solution\)

emmm懒得写惹,看这里叭。套路一定要记熟。
\([\gcd(i,j)=1]\)这种,那种反演不好做就用\(\sum_{d\mid n}\mu(d)=[n=1]\)去替换。

再写一下线筛积性函数\(F(T)=\sum_{d\mid T}d\mu(d)\)的部分:
首先对于一个质数\(p\)\(F(p)=\mu(p)+p\mu(p)=1-p\)
考虑\(a\)的最小质因子\(p\),若\(a,p\)互质,则\(F(ap)=F(a)F(p)\)
否则因为\(F(p^k)\)不管\(k\)是几(正整数),都有\(F(p^k)=F(p)=1-p\),所以\(F(ap)=F(\frac{a}{p^k})F(p^{k+1})=F(a)\)

单次询问复杂度\(O(\sqrt n)\)。还有两次数论分块的做法(\(O(n)\)的)。
还可以杜教筛=-=

有些题...还是不想去做啊...


//54532kb	3584ms
#include <cstdio>
#include <algorithm>
#define mod 20101009
#define Mod x>=mod&&(x-=mod)
#define Add (x+=v)>=mod&&(x-=mod)
#define S(x) ((1ll*(x)*(x+1)>>1)%mod)
typedef long long LL;
const int N=1e7+5;

int P[N>>3],F[N];
bool notP[N];

void Init(const int n)
{
	F[1]=1;
	for(int i=2,cnt=0; i<=n; ++i)
	{
		if(!notP[i]) P[++cnt]=i, F[i]=mod+1-i;
		for(int j=1,v; j<=cnt&&(v=i*P[j])<=n; ++j)
		{
			notP[v]=1;
			if(i%P[j]) F[v]=1ll*F[i]*F[P[j]]%mod;
			else {F[v]=F[i]; break;}
		}
	}
	for(int i=1; i<=n; ++i) F[i]=(F[i-1]+1ll*F[i]*i)%mod;
}

int main()
{
	int n,m; scanf("%d%d",&n,&m);
	if(n>m) std::swap(n,m);
	Init(n);
	LL ans=0;
	for(int i=1,nxt,t1,t2; i<=n; i=nxt+1)
	{
		t1=n/i, t2=m/i, nxt=std::min(n/t1,m/t2);
		ans+=1ll*S(t1)*S(t2)%mod*(F[nxt]-F[i-1]+mod)%mod;
	}
	printf("%lld\n",ans%mod);

	return 0;
}
posted @ 2019-04-11 16:35  SovietPower  阅读(160)  评论(0编辑  收藏  举报