BZOJ.3351.[IOI2009]Regions(根号分治 差分)
表示非常爽2333
\(Description\)
给定一棵\(n\)个点的树,每个点有一个属性\(1\leq r_i\leq R\)。
\(Q\)次询问,每次询问给定\(r1,r2\),求有多少点对\((x,y)\)满足,\(r_x=r1,\ r_y=r2\),且\(x\)是\(y\)的祖先。
\(n,q\leq2\times10^5,\ R\leq25000\)。
\(Solution\)
对属性为\(r2\)的有多少个点分类讨论。
若\(\leq\sqrt n\),在每个点处暴力统计它祖先的贡献;
若\(\gt\sqrt n\),则这样的属性不超过\(\sqrt n\)种,在属性为\(r1\)的点上暴力枚举这些\(r2\)更新答案(这里可以差分:进入子树前与访问完子树后)。
显然对于第二种情况,在每个点上,要对询问的\(r2\)去重才能保证复杂度(然而数据没卡不去重好像也能过...)。
关于如何去重,自己想的是,对\(r2\)相同的一些询问,要同时更新它们。大概以\(r2\)为关键字sort
下,就可以差分了?
事实上对询问点对\((r1,r2)\)判一下重就可以了...如果出现够询问\((r1,r2)\),就直接用之前的作答案。
复杂度\(O(n\sqrt n+q\sqrt n)\)。
有树分块做法,然而懒得看。
//28360kb 7720ms
#include <map>
#include <cmath>
#include <cstdio>
#include <cctype>
#include <vector>
#include <algorithm>
#define mp std::make_pair
#define pr std::pair<int,int>
#define gc() getchar()
#define MAXIN 500000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=2e5+5,M=25005;
int Enum,H[N],nxt[N],A[N],Ans[N];
std::vector<pr> v1[M],v2[M];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v)
{
nxt[v]=H[u], H[u]=v;
}
void DFS(int x)
{
static int sum1[N],sum2[N];
const std::vector<pr> &vec2=v2[A[x]];//一开始&忘了写...我说怎么MLE=-=
for(int i=0,l=vec2.size(); i<l; ++i)
Ans[vec2[i].second]+=sum2[vec2[i].first];
++sum1[A[x]], ++sum2[A[x]];
const std::vector<pr> &vec1=v1[A[x]];
for(int i=0,l=vec1.size(); i<l; ++i)
Ans[vec1[i].second]-=sum1[vec1[i].first];
for(int v=H[x]; v; v=nxt[v]) DFS(v);
for(int i=0,l=vec1.size(); i<l; ++i)
Ans[vec1[i].second]+=sum1[vec1[i].first];
--sum2[A[x]];
}
int main()
{
static int pos[N],cnt[M];
const int n=read(),R=read(),Q=read(),size=sqrt(n);
++cnt[A[1]=read()];
for(int i=2; i<=n; ++i) AE(read(),i), ++cnt[A[i]=read()];
std::map<pr,int> f;
std::map<pr,int>::iterator it;
for(int i=1; i<=Q; ++i)
{
int r1=read(),r2=read();
if((it=f.find(mp(r1,r2)))==f.end())
{
f[mp(r1,r2)]=pos[i]=i;
if(cnt[r2]<=size) v2[r2].push_back(mp(r1,i));
else v1[r1].push_back(mp(r2,i));
}
else pos[i]=it->second;
}
DFS(1);
for(int i=1; i<=Q; ++i) printf("%d\n",Ans[pos[i]]);//其实应该用long long的=v=
return 0;
}
------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------