BZOJ.2324.[ZJOI2011]营救皮卡丘(费用流 Floyd)
首先预处理出\(dis[i][j]\),表示从\(i\)到\(j\)的最短路。可以用\(Floyd\)处理。
注意\(i,j\)是没有大小关系限制的(\(i>j\)的\(dis[i][j]\)也要求,虽然后面用不到),因为可以从\(i\)经过中间点\(k,\ i<k<j\),到达\(j\)。同时\(i\to j\)只能经过\(k<\max(i,j)\)的点,否则是走不了\(k\)的。
然后题意可以转化为用不超过\(k\)条路径覆盖所有点,最小化边权和。
拆点,建二分图。对于任意两点\(i,j,\ i<j\),只由\(i\)向\(j'\)连边,容量\(1\),费用为\(dis[i][j]\)。这样建有向边也符合从编号小的向大的走,也不会出现环。
从\(S\)向\(1,...,n\)连容量\(1\),费用\(0\)的边;\(1,...,n\)向\(T\)连容量\(1\),费用\(0\)的边。
\(S\)向\(0\)连容量\(k\),费用\(0\)的边;\(0\)向每个拆点后的点\(1',...,n'\)连容量\(1\),费用\(dis[0][i]\)的边。
然后跑最小费用最大流即可。
这样为什么可以满足\(k\)路径覆盖呢。。从\(0\)向\(i'\)流就表示新建一条\(0\to i'\to...\)的路径,不会超过\(k\)条。(如果是\(i\to j',\ i\neq0\),则表示在一条已有的路径中从\(i\)走到了\(j\))
同时图是\(DAG\),且会满流,所以一定合法。
终于遇到zkw比SPFA慢的题了/托腮。
SPFA:
//3072kb 220ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=305,M=(N*N/2+3*N)*2,INF=0x3f3f3f3f;
int S,T,Cost,Enum,H[N],nxt[M],fr[M],to[M],cap[M],cost[M],dis[N][N],pre[N];
bool vis[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v,int w,int c)
{
to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], H[u]=Enum, cap[Enum]=w, cost[Enum]=c;
to[++Enum]=u, fr[Enum]=v, nxt[Enum]=H[v], H[v]=Enum, cap[Enum]=0, cost[Enum]=-c;
}
bool SPFA()
{
static int dis[N];
static bool inq[N];
static std::queue<int> q;
memset(dis,0x3f,sizeof dis);
dis[S]=0, q.push(S);
while(!q.empty())
{
int x=q.front(); q.pop();
inq[x]=0;
for(int i=H[x],v; i; i=nxt[i])
if(cap[i] && dis[to[i]]>dis[x]+cost[i])
dis[v=to[i]]=dis[x]+cost[i], pre[v]=i, !inq[v]&&(q.push(v),inq[v]=1);
}
return dis[T]<INF;
}
inline void Augment()
{
for(int i=T; i!=S; i=fr[pre[i]])
--cap[pre[i]], ++cap[pre[i]^1], Cost+=cost[pre[i]];
}
int MCMF()
{
while(SPFA()) Augment();
return Cost;
}
int main()
{
const int n=read(),m=read(),K=read();
Enum=1, S=2*n+1, T=2*n+2;
memset(dis,0x3f,sizeof dis);
for(int i=0; i<=n; ++i) dis[i][i]=0;
for(int i=1,u,v; i<=m; ++i)
u=read(), v=read(), dis[u][v]=dis[v][u]=std::min(dis[v][u],read());
for(int k=0; k<=n; ++k)
for(int i=0; i<=n; ++i)
for(int j=0; j<=n; ++j)
if(k<i||k<j) dis[i][j]=std::min(dis[i][j],dis[i][k]+dis[k][j]);
AE(S,0,K,0);
for(int i=1; i<=n; ++i) AE(S,i,1,0), AE(i+n,T,1,0);
for(int i=0; i<n; ++i)
for(int j=i+1; j<=n; ++j)
AE(i,j+n,1,dis[i][j]);
printf("%d\n",MCMF());
return 0;
}
zkw:
//2704kb 280ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=305,M=(N*N/2+3*N)*2,INF=0x3f3f3f3f;
int S,T,Cost,Enum,cur[N],H[N],nxt[M],to[M],cap[M],cost[M],dis[N][N],f[N];
bool vis[N];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v,int w,int c)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, cap[Enum]=w, cost[Enum]=c;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, cap[Enum]=0, cost[Enum]=-c;
}
bool SPFA()
{
static bool inq[N];
static std::queue<int> q;
memset(f,0x3f,T+1<<2);
f[S]=0, q.push(S);
while(!q.empty())
{
int x=q.front(); q.pop();
inq[x]=0;
for(int i=H[x],v; i; i=nxt[i])
if(cap[i] && f[to[i]]>f[x]+cost[i])
f[v=to[i]]=f[x]+cost[i], !inq[v]&&(q.push(v),inq[v]=1);
}
return f[T]<INF;
}
bool DFS(int x)
{
if(x==T) return 1;
vis[x]=1;
for(int &i=cur[x]; i; i=nxt[i])
if(cap[i] && !vis[to[i]] && f[to[i]]==f[x]+cost[i] && DFS(to[i]))//f not dis!
return --cap[i],++cap[i^1],Cost+=cost[i],1;
return 0;
}
int MCMF()
{
while(SPFA())
{
memset(vis,0,T+1), memcpy(cur,H,T+1<<2);
while(DFS(S));
}
return Cost;
}
int main()
{
const int n=read(),m=read(),K=read();
Enum=1, S=2*n+1, T=2*n+2;
memset(dis,0x3f,sizeof dis);
for(int i=0; i<=n; ++i) dis[i][i]=0;
for(int i=1,u,v; i<=m; ++i)
u=read(), v=read(), dis[u][v]=dis[v][u]=std::min(dis[v][u],read());
for(int k=0; k<=n; ++k)
for(int i=0; i<=n; ++i)
for(int j=0; j<=n; ++j)
if(k<i||k<j) dis[i][j]=std::min(dis[i][j],dis[i][k]+dis[k][j]);
AE(S,0,K,0);
for(int i=1; i<=n; ++i) AE(S,i,1,0), AE(i+n,T,1,0);
for(int i=0; i<n; ++i)
for(int j=i+1; j<=n; ++j)
AE(i,j+n,1,dis[i][j]);
printf("%d\n",MCMF());
return 0;
}
------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------