BZOJ.4572.[SCOI2016]围棋(轮廓线DP)
\(Description\)
给定\(n,m,c\)。\(Q\)次询问,每次询问给定\(2*c\)的模板串,求它在多少个\(n*m\)的棋盘中出现过。棋盘的每个格子有三种状态。
\(n\leq 100,m\leq 12,c\leq 6,Q\leq 5\)。
\(Solution\)
模板串只有\(2\)行,把它拆成两个串,考虑轮廓线DP。
对于\((i,j)\)这个格子,只需要考虑\((i-1,j)\)是否匹配了模式串的第一行,\((i,j)\)匹配到模式串第二行的哪。
所以令\(f[i][j][S][x][y]\)表示,当前为\((i,j)\),\(i-1\)行匹配了模式串第一行的位置状态为\(S\)(\(S\)第\(k\)位为\(1\)说明\((i-1,k)\)匹配了第一行),第\(i\)行匹配到模式串第一行的位置\(x\),匹配到第二行\(y\)。
转移时枚举三种字符,用KMP预处理会跳到哪一位。
复杂度\(O(n*m*2^{m-c+1}*c^2)\)(\(S\)只需记\(m-c+1\)位)。
//2392kb 792ms
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 1000000007
#define Mod(x) x>=mod&&(x-=mod)
#define Add(x,v) (x+=v)>=mod&&(x-=mod)
typedef long long LL;
const int N=13;
const LL LIM=(LL)1e18;
int f[2][(1<<12)+1][7][7];
struct KMP
{
int s[N],fail[N],to[N][3];
char tmp[N];
void Build(const int n)
{
scanf("%s",tmp+1);
for(int i=1; i<=n; ++i) s[i]=tmp[i]=='W'?0:(tmp[i]=='B'?1:2);
for(int i=2,j=0; i<=n; ++i)
{
while(j && s[i]!=s[j+1]) j=fail[j];
fail[i]=s[i]==s[j+1]?++j:0;
}
s[n+1]=233;
for(int i=0; i<=n; ++i)
for(int c=0; c<3; ++c)
{
int j=i;
while(j && s[j+1]!=c) j=fail[j];
to[i][c]=s[j+1]==c?j+1:0;
}
}
}s1,s2;
inline void Clear(int (*f)[7][7],const int lim,const int C)
{
for(int s=0; s<=lim; ++s)
for(int a=0; a<=C; ++a)
for(int b=0; b<=C; ++b) f[s][a][b]=0;
}
int main()
{
int n,m,C,Q; scanf("%d%d%d%d",&n,&m,&C,&Q);
int lim=(1<<m-C+1)-1; LL pw3=1;
for(int i=n*m; i; --i) pw3=3ll*pw3, pw3>=LIM&&(pw3%=mod);
pw3%=mod;
while(Q--)
{
s1.Build(C), s2.Build(C);
int p=0; memset(f[p],0,sizeof f[p]);
f[p][0][0][0]=1;
for(int i=1; i<=n; ++i)
{
Clear(f[p^1],lim,C);// memset(f[p^1],0,sizeof f[p^1]);//状态少啊
for(int s=0; s<=lim; ++s)
{
LL tmp=0;
for(int a=0; a<=C; ++a)
for(int b=0; b<=C; ++b)
tmp+=f[p][s][a][b];
f[p^1][s][0][0]=tmp%mod;
}
p^=1;
for(int j=1; j<=m; ++j)
{
p^=1, Clear(f[p],lim,C);// memset(f[p],0,sizeof f[p]);
for(int s=0; s<=lim; ++s)
for(int a=0; a<=C; ++a)
for(int b=0,v; b<=C; ++b)
if((v=f[p^1][s][a][b]))
for(int c=0; c<3; ++c)
{
int ta=s1.to[a][c],tb=s2.to[b][c];
if(j<C) Add(f[p][s][ta][tb],v);
else if(!(s>>j-C&1))
if(ta!=C) Add(f[p][s][ta][tb],v);
else Add(f[p][s|(1<<j-C)][ta][tb],v);
else if(tb!=C)
if(ta!=C) Add(f[p][s^(1<<j-C)][ta][tb],v);
else Add(f[p][s][ta][tb],v);
}
}
}
LL ans=0;
for(int s=0; s<=lim; ++s)
for(int a=0; a<=C; ++a)
for(int b=0; b<=C; ++b) ans+=f[p][s][a][b];
printf("%d\n",(int)((pw3+mod-ans%mod)%mod));
}
return 0;
}
------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------