博客园 首页 私信博主 显示目录 隐藏目录 管理 动画

LOJ.6235.区间素数个数(Min_25筛)

题目链接

\(Description\)

给定\(n\),求\(1\sim n\)中的素数个数。
\(2\leq n\leq10^{11}\)

\(Solution\)

Min_25筛。只需要求出\(g(n,|P|)\)

跑的好慢啊QAQ

//5283ms	11.62M
#include <cmath>
#include <cstdio>
#include <algorithm>
typedef long long LL;
const int N=317000<<1;

int cnt,P[N>>2],id1[N],id2[N];
LL g[N],w[N];
bool notP[N];

void Init(int n)
{
	notP[1]=1;
	for(int i=2; i<=n; ++i)
	{
		if(!notP[i]) P[++cnt]=i;
		for(int j=1; j<=cnt&&i*P[j]<=n; ++j)
			if(notP[i*P[j]]=1,!(i%P[j])) break;
	}
}

int main()
{
	LL n; scanf("%lld",&n);
	int m=0,Sqr=sqrt(n+0.5); Init(Sqr);
	for(LL i=1,j; i<=n; i=j+1)
	{
		w[++m]=n/i, j=n/w[m];
		if(w[m]<=Sqr) id1[w[m]]=m;
		else id2[j]=m;
		g[m]=w[m]-1;
	}
	w[m+1]=-1;
	for(int j=1; j<=cnt; ++j)
	{
		int pj=P[j]; LL lim=1ll*pj*pj;
		for(int i=1; lim<=w[i]; ++i)
		{
			int k=w[i]/pj<=Sqr?id1[w[i]/pj]:id2[n/(w[i]/pj)];
			g[i]-=g[k]-j+1;
		}
	}
	printf("%lld\n",g[1]);

	return 0;
}

还有种很神的写法

#include<cstdio>
#include<math.h>

#define ll long long

const int N = 316300;
ll n, g[N<<1], a[N<<1];
int id, cnt, sn, prime[N];
inline int Id(ll x){ return x<=sn?x:id-n/x+1;}
int main() {
	scanf("%lld", &n), sn=sqrt(n);
	for(ll i=1; i<=n; i=a[id]+1) a[++id]=n/(n/i), g[id]=a[id]-1;
	for(int i=2; i<=sn; ++i) if(g[i]!=g[i-1]){
        // 这里 i 必然是质数,因为 g[] 是前缀质数个数
        // 当 <i 的质数的倍数都被筛去,让 g[] 发生改变的位置只能是下一个质数
        // 别忘了 i<=sn 时,ID(i) 就是 i。
		prime[++cnt]=i;
		ll sq=(ll)i*i;
		for(int j=id; a[j]>=sq; --j) g[j]-=g[Id(a[j]/i)]-(cnt-1);
	}
	return printf("%lld\n", g[id]), 0;
}
posted @ 2018-12-11 15:35  SovietPower  阅读(758)  评论(0编辑  收藏  举报