AGC 007D.Shik and Game(DP)
\(Description\)
数轴上有一个人,从\(0\)出发到\(E\),速度为\(1\)。数轴上还有\(n\)只熊,每只熊会在经过后的\(T\)时刻后产生一个金币。给定\(E,T\)以及\(n\)个熊的坐标\(p_i\),求收集完所有金币并到达\(E\)的最短时间。
\(n\leq10^5,\quad E,T\leq10^9\)。
\(Solution\)
令\(f_i\)表示当前\(1\sim i\)只熊的金币已经收集完,且现在在\(p_i\)处的最短时间。
每次一定是路过一段的熊,然后回去吃完金币再回到\(i\)。
那么有:$$f_i=\min{f_j+p_i-p_j+\max{T,\ 2(p_i-p_{j+1})}}$$
其实\(p_i-p_j\)这一部分是必走的(就是从\(0\)到\(E\)),不需要考虑,可以最后直接加个总时间\(E\)。
所以$$f_i=\min{f_j+\max{T,\ 2(p_i-p_{j+1})}}$$
尝试对这个\(\max\)分类讨论一下。
假如我们维护最接近原点且满足\(T>2(p_i-p_{j+1})\)的位置\(j\),那么方程就是\(f_i=\min\{f_j+T\}\)。
而对于不要的那些满足\(T\leq2(p_i-p_{j+1})\)的\(j\),\(f_i=\min\{f_j+2p_i-2p_{j+1}\}\),只要记录这些\(j\)的\(f_j-2p_{j+1}\)的最小值就可以了(是段前缀)。
复杂度\(O(n)\)。
//4ms 2304KB
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 1000000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5;
int p[N];
LL f[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
int n=read(),E=read(),T=read();
for(int i=1; i<=n; ++i) p[i]=read();
LL mn=1e16;
for(int i=1,j=0; i<=n; ++i)
{
while(T<=2*(p[i]-p[j+1])) mn=std::min(mn,f[j]-2*p[j+1]), ++j;
if(j!=i) f[i]=std::min(f[j]+T,mn+2*p[i]);
else f[i]=mn+2*p[i];
}
printf("%lld\n",f[n]+E);
return 0;
}
------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------