博客园 首页 私信博主 显示目录 隐藏目录 管理 动画

Codeforces.1082E.Increasing Frequency(思路)

题目链接

\(Description\)

给定\(n\)个数。你可以选择一段区间将它们都加上或减去任意一个数。求最终序列中最多能有多少个数等于给定的\(C\)
\(n\leq5\times10^5\)

\(Solution\)

先记一个表示\(C\)的个数的前缀和\(sum_i\)
选择修改的区间\([l,r]\)一定满足\(A_l=A_r\)且都是由\(A_l\)变成\(C\)。所以我们枚举右端点,对每种权值单独考虑。
那么\(A_r\)要么是由前面某个等于\(A_r\)的数转移过来,要么\(l\)直接等于\(r\)
所以记\(mx_{a_i}\)为之前\(a_i\)这个数的最大贡献,那么$$mx_{a_i}=\max{\ mx_{a_i}+1,\ \ sum_{i-1}+1}$$

\(Ans=\max\{mx_{a_i}+sum_n-sum_i\}\)
for一遍就行啦。

//31ms	6700KB
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=5e5+5;

int A[N],sum[N],mx[N];
char IN[MAXIN],*SS=IN,*TT=IN;

inline int read()
{
	int now=0;register char c=gc();
	for(;!isdigit(c);c=gc());
	for(;isdigit(c);now=now*10+c-'0',c=gc());
	return now;
}

int main()
{
	const int n=read(),C=read();
	for(int i=1; i<=n; ++i) sum[i]=sum[i-1]+((A[i]=read())==C);
	int ans=0; const int sn=sum[n];
	for(int i=1; i<=n; ++i)
		mx[A[i]]=std::max(mx[A[i]],sum[i-1])+1, ans=std::max(ans,mx[A[i]]+sn-sum[i]);
	printf("%d\n",ans);

	return 0;
}
posted @ 2018-12-10 08:47  SovietPower  阅读(206)  评论(0编辑  收藏  举报