BZOJ.5092.[Lydsy1711月赛]分割序列(高维前缀和)
\(Description\)
\(Solution\)
首先处理\(a_i\)的前缀异或和\(s_i\)。那么在对于序列\(a_1,...,a_n\),在\(i\)位置处分开的价值为:\(s_i+s_i\ ^{\wedge}s_n\)。
虽然有个加,但依旧可以考虑按位计算。如果\(s_n\)的第\(k\)位为\(1\),那\(s_i\)的第\(k\)位为\(0\)或是\(1\)贡献都是\(2^k\)(贡献即\(s_i+s_i\ ^{\wedge}s_n\)在第\(k\)位上是否为\(1\));如果\(s_n\)的第\(k\)位为\(0\),那么\(s_i\)第\(k\)位为\(0\)则贡献为\(0\),为\(1\)则贡献为\(2*2^k\)。
\(n\)就是指我们当前处理的前缀是\(a[1...n]\)。然后从高到低枚举每一位\(k\),如果\(s_n\)在这一位为\(1\),显然答案一定可以得到\(2^k\)的贡献;否则\(s_n\)在这一位为\(0\),我们应尽量让分割位置\(i\)满足\(s_i\)在第\(k\)位为\(1\),也就是找一个\(n\)前面的位置\(i\)满足\(s_i\)在第\(k\)位为\(1\),如果找得到,答案就可以得到\(2^{k+1}\)的贡献,并限制了\(s_i\)的第\(k\)位为\(1\)。
继续枚举更低位\(k'\)时,在第二种情况\(s_i\)不仅要满足\(s_i\)在第\(k'\)位为\(1\),还要满足之前的第\(k\)位为\(1\),也就是找是否存在\(s_i\)第\(k,k'\)位同时为\(1\)的\(n\)前面的位置\(i\)。
之后同理。
也就是说我们要求是否存在\(i\leq n\),\(s_i\)的第\(k\)位为\(1\)且前\(k\)位都满足之前的限制(某些位必须为\(1\))。
不妨去求,第\(k\)位为\(1\)且满足限制的最靠前的位置\(i\),判断是否有\(i\leq n\)。
因为限制就是某些位必须为\(1\),其它位任意,也就是超集。所以用高维前缀和维护满足某种限制的集合中,最靠前的位置就可以了。
复杂度\(O(2^kk)\)。
//6576kb 1748ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=(1<<20)+5;
int s[300005],f[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
static int pw[30];
pw[0]=1;
for(int i=1; i<=21; ++i) pw[i]=pw[i-1]<<1;
int n=read(),mx=0;
memset(f,0x3f,sizeof f);
for(int i=1,t; i<=n; ++i)
s[i]=s[i-1]^read(), mx=std::max(mx,s[i]), f[s[i]]=std::min(f[s[i]],i);
int bit=1;
while(pw[bit]<=mx) ++bit;
for(int i=0,lim=1<<bit; i<bit; ++i)
for(int s=0; s<lim; ++s)
if(!(s&pw[i])) f[s]=std::min(f[s],f[s|pw[i]]);
for(int i=1; i<=n; ++i)
{
int ans=0,t=0;
for(int j=bit-1; ~j; --j)
if(s[i]&pw[j]) ans|=pw[j];
else if(f[t|pw[j]]<=i) t|=pw[j], ans+=pw[j+1];//+= not |=...
printf("%d\n",ans);
}
return 0;
}
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------