BZOJ.5093.[Lydsy1711月赛]图的价值(NTT 斯特林数)
\(Description\)
求n个点组成的所有简单无向图的所有点的度数k次方之和。
即求
\(Solution\)
对于单独一个点,我们枚举它的度数(有多少条边)来计算它的贡献:
每个点是一样的,所以
考虑如何计算\(\sum_{i=0}^{n-1}C_{n-1}^ii^k\)。
然后...dalao看到\(i^k\)就想起了第二类斯特林数:
\(S(n,m)\)即在\(m\)个无区别盒子中放\(n\)个不同小球的方案数(要求盒子非空)。
\(S(n,m)\)的一个公式为\[S(n,m)=\frac{1}{m!}\sum_{k=0}^m(-1)^kC_m^k(m-k)^n \]即利用容斥,枚举空盒子至少有多少个。因为盒子无序所以再除以\(m!\)。
而利用反演,或者是组合意义可以得到:\[m^n=\sum_{k=0}^mC_m^kS(n,k)k! \]斯特林数中的盒子是无序的所以再乘个\(k!\)。
(\(\sum\)的上界是\(m\)是\(n\)都可以,看需要)
为了方便先令\(n=n-1\)。
我们把\(m^n=\sum_{k=0}^mC_m^kS(n,k)k!\)代进\(Ans\)的\(\sum\)里:
然后,还是没法做就把\(j\)放到前面枚举试试:
考虑一下\(\sum_{i=j}^nC_n^iC_i^j\)的组合意义,即从\(n\)个物品中选任意多个(至少\(j\)个),然后从它们中再选出\(j\)个。也就是从\(n\)个中选出\(j\)个后,其余\(n-j\)个任意选的方案数,即\(C_n^j2^{n-j}\)。
所以式子还可以化成:
后面的三项\(j!\cdot C_n^j\cdot 2^{n-j}\)(\(A_n^j\cdot 2^{n-j }\))都可以直接算,所以我们只要算\(S(k,j)\)就可以了。同BZOJ4555,把上面的
展开成
是卷积形式,就可以用\(NTT\)计算了。(\(n<k\)时\(S(n,k)=0\),所以\(j\)枚举到\(\min(n,k)\)就好了)
//11060kb 11548ms
#include <cstdio>
#include <algorithm>
#define G 3
#define invG 332748118
#define inv2 499122177
#define mod 998244353
#define Mod(x) x>=mod&&(x-=mod)
#define Add(x,v) (x+=v)>=mod&&(x-=mod)
#define Mul(x,y) (1ll*(x)*(y)%mod)
typedef long long LL;
const int N=(1<<19)+5;
int fac[N],ifac[N],f[N],g[N],rev[N];
inline int FP(int x,int k)
{
int t=1;
for(; k; k>>=1,x=Mul(x,x))
if(k&1) t=Mul(t,x);
return t;
}
void NTT(int *a,int lim,int opt)
{
for(int i=1; i<lim; ++i) if(i<rev[i]) std::swap(a[i],a[rev[i]]);
for(int i=2; i<=lim; i<<=1)
{
int mid=i>>1,Wn=FP(~opt?G:invG,(mod-1)/i);
for(int j=0; j<lim; j+=i)
for(int k=j,w=1,t; k<j+mid; ++k,w=Mul(w,Wn))
a[k+mid]=a[k]-(t=Mul(w,a[k+mid]))+mod, Mod(a[k+mid]),
a[k]+=t, Mod(a[k]);
}
if(opt==-1) for(int i=0,inv=FP(lim,mod-2); i<lim; ++i) a[i]=Mul(a[i],inv);
}
int main()
{
int n,K; scanf("%d%d",&n,&K); --n;//!
int m=std::min(n,K);
fac[0]=fac[1]=1, ifac[0]=ifac[1]=1;
for(int i=2; i<=m; ++i) fac[i]=Mul(fac[i-1],i);
ifac[m]=FP(fac[m],mod-2);
for(int i=m; i; --i) ifac[i-1]=Mul(ifac[i],i);
for(int i=0; i<=m; ++i) f[i]=i&1?mod-ifac[i]:ifac[i], g[i]=Mul(FP(i,K),ifac[i]);//x^K/x! (n=K)
int lim=1,l=-1;
while(lim<=m+m) lim<<=1,++l;
for(int i=1; i<lim; ++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l);
NTT(f,lim,1), NTT(g,lim,1);
for(int i=0; i<lim; ++i) f[i]=Mul(f[i],g[i]);
NTT(f,lim,-1);
LL ans=0; int pw2=FP(2,n),A=1;//2^{n-i} A(n,i)
for(int i=0; i<=m; ++i) ans+=1ll*f[i]*A%mod*pw2%mod, pw2=Mul(pw2,inv2), A=Mul(A,n-i);
printf("%lld\n",ans%mod*(n+1)%mod*FP(2,(1ll*n*(n-1)>>1ll)%(mod-1))%mod);
return 0;
}
很久以前的奇怪但现在依旧成立的签名
attack is our red sun $$\color{red}{\boxed{\color{red}{attack\ is\ our\ red\ sun}}}$$ ------------------------------------------------------------------------------------------------------------------------