Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
博客园 首页 私信博主 显示目录 隐藏目录 管理 动画

BZOJ.4827.[HNOI2017]礼物(FFT)

BZOJ
洛谷


Description
有两个环,上面各有n个数x1,...,xn,y1,...,yn。你可以将一个环旋转任意角度,以及将一个环中所有的数加上任意非负整数c
旋转及修改后,将两个环从某个位置依次标号1,2,...,n,求ni=1(xiyi)2的最小值。
n50000, xi,yi100

Solution
首先不妨枚举旋转多少次k,然后题目就是要求ni=1(xi+kyi+c)2的最小值,其中k[0,n)c[m,m](显然c枚举到m就足够了,而另一个环增加可以看成这个环减少),且xi+n=xi(是个环啊)。
把式子拆开:

ni=1(xi+kyi+c)2=ni=1[x2i+k+y2i2xi+kyi+c2+2c(xi+kyi)]

再把拆了:

ni=1x2i+k+ni=1y2i2ni=1xi+kyi+nc2+2c(ni=1xini=1yi)

我们发现前面两项ni=1x2i+k+ni=1y2i是不变的,后面两项nc2+2c(ni=1xini=1yi)在序列已经确定的情况下只与c有关,枚举c求个最小值就可以了。

然后我们需要求ni=1xi+kyi的最大值,它只与k有关。
这不就和某些FFT的题一样么,反转xy数组,变为求ni=1xi+kyni+1,就是卷积了。Ansk就是多项式相乘后的第n+k+1项。
枚举k取一个max就可以了。


//12380kb	1120ms(为啥我的FFT这么慢啊QAQ)
#include <cmath>
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=(1<<18)+5;//3n!
const double PI=acos(-1);

int X[N],Y[N],rev[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Complex
{
	double x,y;
	Complex(double x=0,double y=0):x(x),y(y) {}
	Complex operator +(const Complex &a) {return Complex(x+a.x, y+a.y);}
	Complex operator -(const Complex &a) {return Complex(x-a.x, y-a.y);}
	Complex operator *(const Complex &a) {return Complex(x*a.x-y*a.y, x*a.y+y*a.x);}
}A[N],B[N];

inline int read()
{
	int now=0;register char c=gc();
	for(;!isdigit(c);c=gc());
	for(;isdigit(c);now=now*10+c-'0',c=gc());
	return now;
}
void FFT(Complex *a,int lim,int opt)
{
	for(int i=1; i<lim; ++i) if(i<rev[i]) std::swap(a[i],a[rev[i]]);
	for(int i=2; i<=lim; i<<=1)
	{
		int mid=i>>1; Complex Wn(cos(PI/mid),opt*sin(PI/mid));
		for(int j=0; j<lim; j+=i)
		{
			Complex w(1,0),t;
			for(int k=j; k<j+mid; ++k,w=w*Wn)
				a[k+mid]=a[k]-(t=w*a[k+mid]), a[k]=a[k]+t;
		}
//		for(int j=0; j<mid; ++j) W[j]=w, w=w*Wn;//预处理果然并不会快...
//		for(int j=0; j<lim; j+=i)
//			for(int k=0; k<mid; ++k)
//				a[j+k+mid]=a[j+k]-(t=W[k]*a[j+k+mid]), a[j+k]=a[j+k]+t;
	}
	if(opt==-1) for(int i=0; i<lim; ++i) a[i].x/=lim;
}
int Calc(int n)
{
	for(int i=1; i<=n; ++i) A[i+n]=A[i]=Complex(X[i],0);
	for(int i=1; i<=n; ++i) B[i]=Complex(Y[n-i+1],0);
	int lim=1,l=-1;
	while(lim<=3*n) lim<<=1,++l;
	for(int i=1; i<lim; ++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<l);
	FFT(A,lim,1), FFT(B,lim,1);
	for(int i=0; i<lim; ++i) A[i]=A[i]*B[i];
	FFT(A,lim,-1);
	int ans=0;
	for(int k=0; k<n; ++k) ans=std::max(ans,(int)(A[n+k+1].x+0.5));
	return ans;
}

int main()
{
	int n=read(),m=read();
	for(int i=1; i<=n; ++i) X[i]=read();
	for(int i=1; i<=n; ++i) Y[i]=read();
	int ans=0,s=0;
	for(int i=1; i<=n; ++i) ans+=X[i]*X[i]+Y[i]*Y[i], s+=X[i]-Y[i];
	int mn=2e9;
	for(int c=-m; c<=m; ++c) mn=std::min(mn,n*c*c+2*c*s);
	ans+=mn-2*Calc(n);
	printf("%d\n",ans);

	return 0;
}
posted @   SovietPower  阅读(187)  评论(0编辑  收藏  举报
编辑推荐:
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
· dotnet 源代码生成器分析器入门
阅读排行:
· ThreeJs-16智慧城市项目(重磅以及未来发展ai)
· .NET 原生驾驭 AI 新基建实战系列(一):向量数据库的应用与畅想
· Browser-use 详细介绍&使用文档
· 软件产品开发中常见的10个问题及处理方法
· Vite CVE-2025-30208 安全漏洞
点击右上角即可分享
微信分享提示