(转载)Linux多线程实现

转载自:https://www.cnblogs.com/zhaoyl/p/3620204.html

首先从OS设计原理上阐明三种线程:内核线程、轻量级进程、用户线程

内核线程

内核线程就是内核的分身,一个分身可以处理一件特定事情。这在处理异步事件如异步IO时特别有用。内核线程的使用是廉价的,唯一使用的资源就是内核栈和上下文切换时保存寄存器的空间。支持多线程的内核叫做多线程内核(Multi-Threads kernel )。

轻量级进程

轻量级线程(LWP)是一种由内核支持的用户线程。它是基于内核线程的高级抽象,因此只有先支持内核线程,才能有LWP。每一个进程有一个或多个LWPs,每个LWP由一个内核线程支持。这种模型实际上就是恐龙书上所提到的一对一线程模型。在这种实现的操作系统中,LWP就是用户线程。

由于每个LWP都与一个特定的内核线程关联,因此每个LWP都是一个独立的线程调度单元。即使有一个LWP在系统调用中阻塞,也不会影响整个进程的执行。

轻量级进程具有局限性。首先,大多数LWP的操作,如建立、析构以及同步,都需要进行系统调用。系统调用的代价相对较高:需要在user mode和kernel mode中切换。其次,每个LWP都需要有一个内核线程支持,因此LWP要消耗内核资源(内核线程的栈空间)。因此一个系统不能支持大量的LWP。

注:

LWP 的术语是借自于 SVR4/MP 和 Solaris 2.x 。有些系统将 LWP 称为虚拟处理器。而将之称为轻量级进程的原因可能是:在内核线程的支持下, LWP 是独立的调度单元,就像普通的进程一样。所以 LWP 的最大特点还是每个 LWP 都有一个内核线程支持。

 

用户线程

LWP虽然本质上属于用户线程,但LWP线程库是建立在内核之上的,LWP的许多操作都要进行系统调用,因此效率不高。而这里的用户线程指的是完全建立在用户空间的线程库,用户线程的建立,同步,销毁,调度完全在用户空间完成,不需要内核的帮助。因此这种线程的操作是极其快速的且低消耗的。

Uthread1.JPG 

上图是最初的一个用户线程模型,从中可以看出,进程中包含线程,用户线程在用户空间中实现,内核并没有直接对用户线程进程调度,内核的调度对象和传统进程一样,还是进程本身,内核并不知道用户线程的存在。用户线程之间的调度由在用户空间实现的线程库实现。

这种模型对应着恐龙书中提到的多对一线程模型,其缺点是一个用户线程如果阻塞在系统调用中,则整个进程都将会阻塞。

 

加强版的用户线程——用户线程+LWP

这种模型对应着恐龙书中多对多模型。用户线程库还是完全建立在用户空间中,因此用户线程的操作还是很廉价,因此可以建立任意多需要的用户线程。操作系统提供了 LWP 作为用户线程和内核线程之间的桥梁。 LWP 还是和前面提到的一样,具有内核线程支持,是内核的调度单元,并且用户线程的系统调用要通过 LWP ,因此进程中某个用户线程的阻塞不会影响整个进程的执行。用户线程库将建立的用户线程关联到 LWP 上, LWP 与用户线程的数量不一定一致。当内核调度到某个 LWP 上时,此时与该 LWP 关联的用户线程就被执行。
Uthread2.JPG 

很多文献中都认为轻量级进程就是线程,实际上这种说法并不完全正确,从前面的分析中可以看到,只有在用户线程完全由轻量级进程构成时,才可以说轻量级进程就是线程

 

LinuxThreads

  所实现的就是基于核心轻量级进程的"一对一"线程模型,一个线程实体对应一个核心轻量级进程,而线程之间的管理在核外函数库(我们常用的pthread库)中实现。 一直以来, linux内核并没有线程的概念. 每一个执行实体都是一个task_struct结构, 通常称之为进程. 

  进程是一个执行单元, 维护着执行相关的动态资源. 同时, 它又引用着程序所需的静态资源.通过系统调用clone创建子进程时, 可以有选择性地让子进程共享父进程所引用的资源. 这样的子进程通常称为轻量级进程,如上文所述,又叫内核线程

[插曲]说下fork和vfork的区别
复制代码
  fork时,子进程是父进程的一个拷贝。子进程从父进程那得到了数据段和堆栈段,但不是与父进程共享而是单独分配内存。然而这里的非共享最初状态是共享的,linux下使用了写时复制技术,刚开始共享父进程的数据段,在写数据段的时候才进行复制,以fork为例,最终共享的资源就是task_struct、系统空间堆栈(copy_thread)、页面表等。
  vfork时,因为实现为子进程先执行,所以是不拷贝(没必要)父进的虚存空间,也就是用户空间堆栈,clone(clone_vfork|clone_vm|sigchld,0),指明的参数是不会拷贝,注定共享的。因为现在的fork都是写实拷贝,所以vfork的优势便不明显了——只是不用向vfork那样拷贝页表。另外,内核都是优先让子进程先执行,考虑到调度问题,fork不保证;但vfork可保证这点  2.4内核 do_dork是fork/vfork/clone系统调用的共同代码,其核心流程如下:
  1) 默认对所有资源进行共享暂不复制;
  2) 如果flags未指定共享(相应位为0),则进行深层次复制。包括,file,fs,sighand,mm。
     以CLONE_FILES为例,对fork而言为1,也就是必须复制两份files,这样父子进程才有独立上下文(各自独立lseek不影响,但是文件指针肯定还是指向一个);但是对于vfork,这个标志为1,也就是父子进程共享文件上下文(注意这里不是共享文件指针,连上下文都共享!也就是子进程lseek会改变父进程读写位置),这岂不乱套(类似还有vfork的CLONE_VM标志)!别担心,do_fork中会保证vfork时候,自进程先执行完!
     特殊说下,mm资源即使是非共享的,即CLONE_VM=1(fork如此),也不马上复制,而是复制页面表后,把也表项设置为写保护,这样无论谁写,届时都会再复制一份出来,这才完成的资源的独立——对fork而言。
  3) 复制系统堆栈(区别于用户空间VM)
复制代码

 

用户态线程由pthread库实现,使用pthread以后, 在用户看来, 每一个task_struct就对应一个线程, 而一组线程以及它们所共同引用的一组资源就是一个进程.  但是, 一组线程并不仅仅是引用同一组资源就够了, 它们还必须被视为一个整体.

 

 
posted @ 2018-03-13 09:42  SoftAndHardMan  阅读(220)  评论(0编辑  收藏  举报