随笔分类 - 深度学习
摘要:目录 环境配置 系统环境 项目文件路径 文件环境 config.txt CMakeLists.txt type.names 读取config.txt配置文件 修改图片尺寸格式 读取缺陷标志文件 生成缺陷随机颜色标识 模型推理 推理结果获取 缺陷信息还原并显示 总代码 环境配置 系统环境 Ubuntu
阅读全文
摘要:相比于上一篇Windows10+Python+Yolov8+ONNX图片缺陷识别,并在原图中标记缺陷,有onnx模型则无需配置,无需训练。 优化了程序逻辑,降低了程序运行时间,增加了实时检测功能 目录 1、模型转换 2、查看模型结构 3、修改输入图片的尺寸 4、 图像数据归一化 5、模型推理 6、推
阅读全文
摘要:目录 一、训练自己数据集的YOLOv8模型 1.博主电脑配置 2.深度学习GPU环境配置 3.yolov8深度学习环境准备 4.准备数据集 二、Python+Onnx模型进行图像缺陷检测,并在原图中标注 1、模型转换 2、查看模型结构 3、修改输入图片的尺寸 4、 图像数据归一化 5、模型推理 6、
阅读全文