import pandas as pd import numpy as np import os def get_file(path): # 创建一个空列表 files = os.listdir(path) list1 = [] for file in files: if not os.path.isdir(path + file): # 判断该文件是否是一个文件夹 f_name = str(file) # print(f_name) tr = '\\' # 多增加一个斜杠 filename = path + tr + f_name #filename = f_name list1.append(filename)#得到所有 return list1 #f=r'C:\\Users\\Administrator\\Desktop\\combineFile\\cont_Row_01_Col_02_wf.csv' data2=np.array((range(1,21))) data3=data2 data4=data2 data5=data2 data6=data2 data7=data2 data8=data2 data9=data2 data10=data2 data11=data2 data12=data2 File=get_file(r'C:\Users\Administrator\Desktop\combineFile') for varfile in File: df = pd.read_csv(varfile, header=None) # 每个csv文件中的数据 data1 = np.array(df) # 把表格转换成数组的格式 data = data1[:, 18]#提取出时间序列 c = os.path.splitext(varfile)[0] # 不含后缀带路径的文件名 s1 = c.split('\\')[-1] # 不带后缀的文件名(截取) s2 = s1.split('_')[2] + s1.split('_')[-2]#电极号 i=0 for varible in data:#循环时间 if 1.124<=varible<=1.322: elnum1=np.append(s2,data1[i,:]) data3 = np.row_stack((data3, elnum1)) elif 2.113 <= varible <= 2.311: elnum2 = np.append(s2, data1[i, :]) data4 = np.row_stack((data4, elnum2)) elif 3.103 <= varible <= 3.301: elnum3 = np.append(s2, data1[i, :]) data5 = np.row_stack((data5, elnum3)) elif 4.092 <= varible <= 4.290: elnum4 = np.append(s2, data1[i, :]) data6 = np.row_stack((data6, elnum4)) elif 5.082 <= varible <= 5.280: elnum5 = np.append(s2, data1[i, :]) data7 = np.row_stack((data7, elnum5)) elif 6.071 <= varible <= 6.269: elnum6 = np.append(s2, data1[i, :]) data8 = np.row_stack((data8, elnum6)) elif 7.061 <= varible <= 7.259: elnum7 = np.append(s2, data1[i, :]) data9 = np.row_stack((data9, elnum7)) elif 8.050 <= varible <= 8.248: elnum8 = np.append(s2, data1[i, :]) data10 = np.row_stack((data10, elnum8)) elif 9.039 <= varible <= 9.237: elnum9 = np.append(s2, data1[i, :]) data11 = np.row_stack((data11, elnum9)) elif 10.029 <= varible <= 10.227: elnum10 = np.append(s2, data1[i, :]) data12 = np.row_stack((data12, elnum10)) i=i+1 path2=r'C:\\Users\\Administrator\\Desktop\\splitdata\\' #data3=np.insert(data3, 0, values='0102', axis=1) meansignal3=pd.DataFrame(data=data3[1:]) meansignal3.to_csv(path2+'t1.csv',index=False,header=None) # 进行数据的保存 meansignal4=pd.DataFrame(data=data4[1:]) meansignal4.to_csv(path2+'t2.csv',index=False,header=None) meansignal5=pd.DataFrame(data=data5[1:]) meansignal5.to_csv(path2+'t3.csv',index=False,header=None) meansignal6=pd.DataFrame(data=data6[1:]) meansignal6.to_csv(path2+'t4.csv',index=False,header=None) meansignal7=pd.DataFrame(data=data7[1:]) meansignal7.to_csv(path2+'t5.csv',index=False,header=None) meansignal8=pd.DataFrame(data=data8[1:]) meansignal8.to_csv(path2+'t6.csv',index=False,header=None) meansignal9=pd.DataFrame(data=data9[1:]) meansignal9.to_csv(path2+'t7.csv',index=False,header=None) meansignal10=pd.DataFrame(data=data10[1:]) meansignal10.to_csv(path2+'t8.csv',index=False,header=None) meansignal11=pd.DataFrame(data=data11[1:]) meansignal11.to_csv(path2+'t9.csv',index=False,header=None) meansignal12=pd.DataFrame(data=data12[1:]) meansignal12.to_csv(path2+'t10.csv',index=False,header=None)