10.3 文件分布式系统HDFS

HDFS

1  HDFS是什么?

首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件

其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色;

HDFS是分布式文件系统(多个datanode更亲切点吧)

2  设计思想以及特性

 设计思想:分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析。

重要特性如下:

(1)HDFS中的文件在物理上是分块存储(block,块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M

(2)HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data

(3)目录结构及文件分块信息(元数据)的管理由namenode节点承担

——namenodeHDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(blockid,及所在的datanode服务器

(4)文件的各block存储管理datanode点承担

---- datanodeHDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication

(5)HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改。读的速度快。

3  在大数据系统中作用

为各类分布式运算框架(如:mapreducesparktez……)提供数据存储服务

4  工作机制

  1. HDFS集群分为两大角色:NameNodeDataNode
  2. NameNode负责管理整个文件系统的元数据
  3. DataNode 负责管理用户的文件数据块
  4. 文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode
  5. 每一个文件块可以有多个副本,并存放在不同的datanode
  6. Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量
  7. HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行

5 读入数据的大体流程

 

客户端将要读取的文件路径发送给namenodenamenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件

6  写入数据大体流程

 

客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件blockdatanode,然后,客户端按顺序将文件逐个block传递给相应datanode,并由接收到blockdatanode负责向其他datanode复制block的副本

 

 

 

posted @ 2017-07-20 18:49  Smileing  阅读(327)  评论(0编辑  收藏  举报