12.13 Redis缓存面试题精简版

 
Redis 面试题
 
    1. Redis是什么(用户第一次使用查数据库,然后第二次使用会主动加载Redis缓存中,缓存可设置自动去数据库更新时间)
      1. Redis 是完全开源的,遵守 BSD 协议,是一个高性能的 key-value非关系型键值对数据库(C语言编写)。
      2. 数据结构服务器,键的值时String。值(value)可以是 字符串(String), 哈希(Hash), 列表(list), 集合(sets) 和 有序集合(sorted sets)等类型。
      3. Redis支持数据的持久化,可以将内存中的数据保存在磁盘中,重启的时候可以再次加载进行使用。
      4. Redis支持数据的备份,即master-slave模式的数据备份,支持主从复制,主机会自动将数据同步到从机,可以进行读写分离。
      5. 与传统数据库不同的是 Redis 的数据是存在内存中的,所以读写速度非常快,因此 redis 被广泛应用于缓存方向,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB。另外,Redis 也经常用来做分布式锁。除此之外,Redis 支持事务 、持久化、LUA脚本、LRU驱动事件、多种集群方案。
      6.  
    2. Redis的优势是什么(高性能:在内存中直接运行、高并发:把部分数据存到缓存中,缓存会及时更新数据库最新数据)
      1. 性能极高, 因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
        1. 单线程为什么这么快:
          1. 纯内存操作
          2. 单线程操作,避免了频繁的上下文切换
          3. 采用了非阻塞I/O多路复用机制
      2. 丰富的数据类型, 支持string,list,set,sorted set,hash
      3. 支持事务,原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
      4. 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除
      5. 持久化
        1. Redis是一个支持持久化的内存数据库,通过持久化机制把内存中的数据同步到硬盘文件来保证数据持久化。当Redis重启后通过把硬盘文件重新加载到内存,就能达到恢复数据的目的
        2. 实现:单独创建fork()一个子进程,将当前父进程的数据库数据复制到子进程的内存中,然后由子进程写入到临时文件中,持久化的过程结束了,再用这个临时文件替换上次的快照文件,然后子进程退出,内存释放。
        3. RDB是Redis默认的持久化方式。按照一定的时间周期策略把内存的数据以快照的形式保存到硬盘的二进制文件。即Snapshot快照存储,对应产生的数据文件为dump.rdb,通过配置文件中的save参数来定义快照的周期。( 快照可以是其所表示的数据的一个副本,也可以是数据的一个复制品。)
        4. AOF:Redis会将每一个收到的写命令都通过Write函数追加到文件最后,类似于MySQL的binlog。当Redis重启是会通过重新执行文件中保存的写命令来在内存中重建整个数据库的内容。
        5. 当两种方式同时开启时,数据恢复Redis会优先选择AOF恢复。
      6. 相对应的缺点
        1. 数据库容量受到物理内存的限制,不能用作海量数据的高性能读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上。
        2. Redis 不具备自动容错和恢复功能,主机从机的宕机都会导致前端部分读写请求失败,需要等待机器重启或者手动切换前端的IP才能恢复。
        3. 主机宕机,宕机前有部分数据未能及时同步到从机,切换IP后还会引入数据不一致的问题,降低了系统的可用性。
        4. Redis 较难支持在线扩容,在集群容量达到上限时在线扩容会变得很复杂。为避免这一问题,运维人员在系统上线时必须确保有足够的空间,这对资源造成了很大的浪费。
    3. 数据类型
      1. String 字符串:字符串类型是 Redis 最基础的数据结构,首先键都是字符串类型,而且 其他几种数据结构都是在字符串类型基础上构建的,我们常使用的 set key value 命令就是字符串。常用在缓存、计数、共享Session、限速等。
      2. Hash 哈希:在Redis中,哈希类型是指键值本身又是一个键值对 结构,形如value={{field1,value1},...{fieldN,valueN}},添加命令:hset key field value。哈希可以用来存放用户信息,比如实现购物车
      3. List 列表:列表(list)类型是用来存储多个有序的字符串。可以做简单的消息队列的功能。另外,可以利用 lrange 命令,做基于 Redis的分页功能,性能极佳,用户体验好。
      4. Set 集合:集合(set)类型也是用来保存多个的字符串元素,但和列表类型不一 样的是,集合中不允许有重复元素,并且集合中的元素是无序的,不能通过 索引下标获取元素。利用 Set 的交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。
      5. Sorted Set 有序集合:Sorted Set 多了一个权重参数 Score,集合中的元素能够按 Score 进行排列。可以做排行榜应用,取 TOP N 操作
    4. 缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级分别是什么
      1. 缓存雪崩:是指缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。
        1. 解决方案:
          1. 缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。
          2. 一般并发量不是特别多的时候,使用最多的解决方案是加锁排队。
          3. 给每一个缓存数据增加相应的缓存标记,记录缓存的是否失效,如果缓存标记失效,则更新数据缓存。
      2. 缓存穿透是指缓存和数据库中都没有的数据,导致所有的请求都落到数据库上,造成数据库短时间内承受大量请求而崩掉。
        1. 解决方案
          1. 接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截;
          2. 从缓存取不到的数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。这样可以防止攻击用户反复用同一个id暴力攻击
          3. 采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的 bitmap 中,一个一定不存在的数据会被这个 bitmap 拦截掉,从而避免了对底层存储系统的查询压力
          4. 布隆过滤器(推荐):就是引入了k(k>1)k(k>1)个相互独立的哈希函数,保证在给定的空间、误判率下,完成元素判重的过程。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。Bloom-Filter算法的核心思想就是利用多个不同的Hash函数来解决“冲突”。Hash存在一个冲突(碰撞)的问题,用同一个Hash得到的两个URL的值有可能相同。为了减少冲突,我们可以多引入几个Hash,如果通过其中的一个Hash值我们得出某元素不在集合中,那么该元素肯定不在集合中。只有在所有的Hash函数告诉我们该元素在集合中时,才能确定该元素存在于集合中。这便是Bloom-Filter的基本思想。Bloom-Filter一般用于在大数据量的集合中判定某元素是否存在。
      3. 缓存击穿
        1. 缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力。和缓存雪崩不同的是,缓存击穿指并发查同一条数据,缓存雪崩是不同数据都过期了,很多数据都查不到从而查数据库。
        2. 解决方案
          1. 设置热点数据永远不过期。
          2. 加互斥锁,互斥锁
      4. 缓存降级:当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。
        1. 缓存降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的(如加入购物车、结算)。
        2. 在进行降级之前要对系统进行梳理,看看系统是不是可以丢卒保帅;从而梳理出哪些必须誓死保护,哪些可降级;比如可以参考日志级别设置预案
          1. 一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;
          2. 警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;
          3. 错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;
          4. 严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。
          5. 服务降级的目的,是为了防止Redis服务故障,导致数据库跟着一起发生雪崩问题。因此,对于不重要的缓存数据,可以采取服务降级策略,例如一个比较常见的做法就是,Redis出现问题,不去数据库查询,而是直接返回默认值给用户。
      5. 缓存预热
        1. 缓存预热:缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!
          1. 解决方案
            1. 直接写个缓存刷新页面,上线时手工操作一下;
            2. 数据量不大,可以在项目启动的时候自动进行加载;
            3. 定时刷新缓存
      6. 热点数据和冷点数据
        1. 热点数据,缓存才有价值
        2. 对于冷数据而言,大部分数据可能还没有再次访问到就已经被挤出内存,不仅占用内存,而且价值不大。频繁修改的数据,看情况考虑使用缓存
        3. 那存不存在,修改频率很高,但是又不得不考虑缓存的场景呢?有!比如,这个读取接口对数据库的压力很大,但是又是热点数据,这个时候就需要考虑通过缓存手段,减少数据库的压力,比如我们的某助手产品的,点赞数,收藏数,分享数等是非常典型的热点数据,但是又不断变化,此时就需要将数据同步保存到Redis缓存,减少数据库压力。
        4. 数据更新前至少读取两次,缓存才有意义。这个是最基本的策略,如果缓存还没有起作用就失效了,那就没有太大价值了。
      7. 缓存热点key
        1. 缓存中的一个Key(比如一个促销商品),在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
        2. 解决方案:对缓存查询加锁,如果KEY不存在,就加锁,然后查DB入缓存,然后解锁;其他进程如果发现有锁就等待,然后等解锁后返回数据或者进入DB查询
    5. redis相比memcached有哪些优势?
      1. 存储方式 Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。 Redis有部份存在硬盘上,redis可以持久化其数据
      2. 数据支持类型 memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型 ,提供list,set,zset,hash等数据结构的存储
      3. 使用底层模型不同 它们之间底层实现方式 以及与客户端之间通信的应用协议不一样。 Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。
      4. value 值大小不同:Redis 最大可以达到 512M;memcache 只有 1mb。
      5. redis的速度比memcached快很多
      6. Redis支持数据的备份,即master-slave模式的数据备份
    6. Redis支持的Java客户端 为什么推荐是Redisson,有哪些特点
      1. Redisson是一个高级的分布式协调Redis客服端,能帮助用户在分布式环境中轻松实现一些Java的对象 (Bloom filter, BitSet, Set, SetMultimap, ScoredSortedSet, SortedSet, Map, ConcurrentMap, List, ListMultimap, Queue, BlockingQueue, Deque, BlockingDeque, Semaphore, Lock, ReadWriteLock, AtomicLong, CountDownLatch, Publish / Subscribe, HyperLogLog)
      2. Jedis是Redis的Java实现的客户端,其API提供了比较全面的Redis命令的支持;Redisson实现了分布式和可扩展的Java数据结构,和Jedis相比,功能较为简单,不支持字符串操作,不支持排序、事务、管道、分区等Redis特性。Redisson的宗旨是促进使用者对Redis的关注分离,从而让使用者能够将精力更集中地放在处理业务逻辑上。
    7. 过期键的删除策略
      1. Redis的过期键的删除策略
      2. 我们都知道,Redis是key-value数据库,我们可以设置Redis中缓存的key的过期时间。Redis的过期策略就是指当Redis中缓存的key过期了,Redis如何处理。
        1. 定时过期:每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。
        2. 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。
        3. 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。
        4. (expires字典会保存所有设置了过期时间的key的过期时间数据,其中,key是指向键空间中的某个键的指针,value是该键的毫秒精度的UNIX时间戳表示的过期时间。键空间是指该Redis集群中保存的所有键。)
      3. Redis key的过期时间和永久有效分别怎么设置?EXPIRE和PERSIST命令。
      4. 我们知道通过expire来设置key 的过期时间,那么对过期的数据怎么处理呢?
        1. 定时去清理过期的缓存;
        2. 当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。
        3. 两者各有优劣,第一种的缺点是维护大量缓存的key是比较麻烦的,第二种的缺点就是每次用户请求过来都要判断缓存失效,逻辑相对比较复杂!具体用哪种方案,大家可以根据自己的应用场景来权衡
    8. 内存如何保证是热点数据,如何优化内存。
      1. redis内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。
      2. Redis的内存淘汰策略是指在Redis的用于缓存的内存不足时,怎么处理需要新写入且需要申请额外空间的数据。过期策略用于处理过期的缓存数据
      3. 内存用完后:如果达到设置的上限,Redis的写命令会返回错误信息(但是读命令还可以正常返回。)或者你可以配置内存淘汰机制,当Redis达到内存上限时会冲刷掉旧的内容。
        1. 全局的键空间选择性移除
          1. noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。
          2. allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。(这个是最常用的)
          3. allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。
        2. 设置过期时间的键空间选择性移除
          1. volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。
          2. volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。
          3. volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。
      4. 内存优化
        1. 可以好好利用Hash,list,sorted set,set等集合类型数据,因为通常情况下很多小的Key-Value可以用更紧凑的方式存放到一起。尽可能使用散列表(hashes),散列表(是说散列表里面存储的数少)使用的内存非常小,所以你应该尽可能的将你的数据模型抽象到一个散列表里面。比如你的web系统中有一个用户对象,不要为这个用户的名称,姓氏,邮箱,密码设置单独的key,而是应该把这个用户的所有信息存储到一张散列表里面
    9. 集群方案
      1. 哨兵模式
      2. 多机部署,保持一致
        1. 主从复制,读写分离
        2. 一类是主数据库(master)一类是从数据库(slave),主数据库可以进行读写操作,当发生写操作的时候自动将数据同步到从数据库,而从数据库一般是只读的,并接收主数据库同步过来的数据,一个主数据库可以有多个从数据库,而一个从数据库只能有一个主数据库。
    10. 分区和分布式方案
      1. 分区相关
        1. 可以在同一个服务器部署多个Redis的实例,并把他们当作不同的服务器来使用,在某些时候,无论如何一个服务器是不够的, 所以,如果你想使用多个CPU,你可以考虑一下分片(shard)。
        2. 分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。
      2. 分布式方案
        1. 分布式Redis是前期做
          1. 既然Redis是如此的轻量(单实例只使用1M内存),为防止以后的扩容,最好的办法就是一开始就启动较多实例。即便你只有一台服务器,你也可以一开始就让Redis以分布式的方式运行,使用分区,在同一台服务器上启动多个实例。
          2. 一开始就多设置几个Redis实例,例如32或者64个实例,对大多数用户来说这操作起来可能比较麻烦,但是从长久来看做这点牺牲是值得的。
          3. 这样的话,当你的数据不断增长,需要更多的Redis服务器时,你需要做的就是仅仅将Redis实例从一台服务迁移到另外一台服务器而已(而不用考虑重新分区的问题)。一旦你添加了另一台服务器,你需要将你一半的Redis实例从第一台机器迁移到第二台机器
        2. 什么是 RedLock
          1. Redis 官方站提出了一种权威的基于 Redis 实现分布式锁的方式名叫 Redlock,此种方式比原先的单节点的方法更安全。它可以保证以下特性:
          2. 安全特性:互斥访问,即永远只有一个 client 能拿到锁
          3. 避免死锁:最终 client 都可能拿到锁,不会出现死锁的情况,即使原本锁住某资源的 client crash 了或者出现了网络分区
          4. 容错性:只要大部分 Redis 节点存活就可以正常提供服务
posted @ 2020-09-08 07:46  Smileing  阅读(167)  评论(0编辑  收藏  举报