Redis缓存穿透、缓存击穿、缓存雪崩原因+解决方案
Redis三大问题#
- 缓存穿透: key对应的数据在数据源并不存在,每次针对此key的请求从缓存获取不到,请求都会到数据源,从而可能压垮数据源。比如用一个不存在的用户id获取用户信息,不论缓存还是数据库都没有,若黑客利用此漏洞进行攻击可能压垮数据库。
- 缓存击穿: key对应的数据存在,但在redis中过期,此时若有大量并发请求过来,这些请求发现缓存过- 期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
- 缓存雪崩: 当缓存服务器重启或者大量缓存集中在某一个时间段失效,这样在失效的时候,也会给后端系统(比如DB)带来很大压力。
解决方案#
缓存穿透
一个一定不存在缓存及查询不到的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。
- 布隆过滤器(推荐): 将所有可能存在的数据hash后缓冲到一个bitMap中,当请求进来的时候,先通过布隆过滤器判断该key是否存在,将那些可能不存在的数据进行拦截,防止大量可能不存在值的请求访问到数据库。布隆过滤器的错判率默认为0.03,但这也大大降低了缓存穿透对数据库带来的危害性。
- 默认初始化: 当请求发送到服务端后,服务端判断请求的key在数据库中不存在时,默认在redis中添加一个有效时间比较短的空的缓存,下次该请求进来时则直接返回缓存中的空值。但是如果一时间有大量不同的key的请求进来后,仍然会有大量请求落到数据库上,给数据库带来巨大的压力。
缓存击穿
key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据(还记得鹿晗在新浪的“官宣”吗)。这个时候,需要考虑一个问题:缓存被“击穿”的问题。
- 互斥锁: 业界比较常用的做法,是使用mutex。简单地来说,就是在缓存失效的时候(判断拿出来的值为空),不是立即去load db,而是先使用缓存工具的某些带成功操作返回值的操作(比如Redis的SETNX或者Memcache的ADD)去set一个mutex key,当操作返回成功时,再进行load db的操作并回设缓存;否则,就重试整个get缓存的方法.
SETNX,是「SET if Not eXists」的缩写,也就是只有不存在的时候才设置,可以利用它来实现锁的效果。
public String get(key) {
String value = redis.get(key);
if (value == null) { //代表缓存值过期
//设置3min的超时,防止del操作失败的时候,下次缓存过期一直不能load db
if (redis.setnx(key_mutex, 1, 3 * 60) == 1) { //代表设置成功
value = db.get(key);
redis.set(key, value, expire_secs);
redis.del(key_mutex);
} else { //这个时候代表同时候的其他线程已经load db并回设到缓存了,这时候重试获取缓存值即可
sleep(50);
get(key); //重试
}
} else {
return value;
}
}
缓存雪崩
与缓存击穿的区别在于这里针对很多key缓存,前者则是某一个key。
缓存正常从Redis中获取,示意图如下:
缓存失效瞬间示意图如下:
缓存失效时的雪崩效应对底层系统的冲击非常可怕!大多数系统设计者考虑用加锁或者队列的方式保证来保证不会有大量的线程对数据库一次性进行读写,从而避免失效时大量的并发请求落到底层存储系统上。还有一个简单方案就时讲缓存失效时间分散开,比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。
加锁排队,伪代码如下:
//伪代码
public object GetProductListNew() {
int cacheTime = 30;
String cacheKey = "product_list";
String lockKey = cacheKey;
String cacheValue = CacheHelper.get(cacheKey);
if (cacheValue != null) {
return cacheValue;
} else {
synchronized(lockKey) {
cacheValue = CacheHelper.get(cacheKey);
if (cacheValue != null) {
return cacheValue;
} else {
//这里一般是sql查询数据
cacheValue = GetProductListFromDB();
CacheHelper.Add(cacheKey, cacheValue, cacheTime);
}
}
return cacheValue;
}
}
加锁排队只是为了减轻数据库的压力,并没有提高系统吞吐量。假设在高并发下,缓存重建期间key是锁着的,这是过来1000个请求999个都在阻塞的。同样会导致用户等待超时,这是个治标不治本的方法!
注意:加锁排队的解决方式分布式环境的并发问题,有可能还要解决分布式锁的问题;线程还会被阻塞,用户体验很差!因此,在真正的高并发场景下很少使用!
随机值伪代码:
//伪代码
public object GetProductListNew() {
int cacheTime = 30;
String cacheKey = "product_list";
//缓存标记
String cacheSign = cacheKey + "_sign";
String sign = CacheHelper.Get(cacheSign);
//获取缓存值
String cacheValue = CacheHelper.Get(cacheKey);
if (sign != null) {
return cacheValue; //未过期,直接返回
} else {
CacheHelper.Add(cacheSign, "1", cacheTime);
ThreadPool.QueueUserWorkItem((arg) -> {
//这里一般是 sql查询数据
cacheValue = GetProductListFromDB();
//日期设缓存时间的2倍,用于脏读
CacheHelper.Add(cacheKey, cacheValue, cacheTime * 2);
});
return cacheValue;
}
}
解释说明:#
- 缓存标记: 记录缓存数据是否过期,如果过期会触发通知另外的线程在后台去更新实际key的缓存;
- 缓存数据: 它的过期时间比缓存标记的时间延长1倍,例:标记缓存时间30分钟,数据缓存设置为60分钟。这样,当缓存标记key过期后,实际缓存还能把旧数据返回给调用端,直到另外的线程在后台更新完成后,才会返回新缓存。
关于缓存崩溃的解决方法,这里提出了三种方案:使用锁或队列、设置过期标志更新缓存、为key设置不同的缓存失效时间,还有一种被称为“二级缓存”的解决方法。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?