CTF中RSA相关题型总结(持续更新)

e很小时:

import gmpy2
from functools import reduce
from Crypto.Util.number import long_to_bytes
def CRT(items):
N = reduce(lambda x, y: x * y, (i[1] for i in items))
result = 0
for a, n in items:
m = N // n
d, r, s = gmpy2.gcdext(n, m)
if d != 1:
raise Exception("Input not pairwise co-prime")
result += a * s * m
return result % N, N
# e, n, c
e = 0x3
n=[0x52d483c27cd806550fbe0e37a61af2e7cf5e0efb723dfc81174c918a27627779b21fa3c851e9e94188eaee3d5cd6f752406a43fbecb53e80836ff1e185d3ccd7782ea846c2e91a7b0808986666e0bdadbfb7bdd65670a589a4d2478e9adcafe97c6ee23614bcb2ecc23580f4d2e3cc1ecfec25c50da4bc754dde6c8bfd8d1fc16956c74d8e9196046a01dc9f3024e11461c294f29d7421140732fedacac97b8fe50999117d27943c953f18c4ff4f8c258d839764078d4b6ef6e8591e0ff5563b31a39e6374d0d41c8c46921c25e5904a817ef8e39e5c9b71225a83269693e0b7e3218fc5e5a1e8412ba16e588b3d6ac536dce39fcdfce81eec79979ea6872793]
c=[0x10652cdfaa6b63f6d7bd1109da08181e500e5643f5b240a9024bfa84d5f2cac9310562978347bb232d63e7289283871efab83d84ff5a7b64a94a79d34cfbd4ef121723ba1f663e514f83f6f01492b4e13e1bb4296d96ea5a353d3bf2edd2f449c03c4a3e995237985a596908adc741f32365]
data = list(zip(c, n))
x, n = CRT(data)
m = gmpy2.iroot(gmpy2.mpz(x), e)[0].digits()
print(m)
print(long_to_bytes(int(m)).decode())

解形如x2(modp)r的同余方程

V&N2020 公开赛 easy_RSA

from random import randint
from gmpy2 import *
from Crypto.Util.number import *
def getprime(bits):
while 1:
n = 1
while n.bit_length() < bits:
n *= next_prime(randint(1,1000))
if isPrime(n - 1):
return n - 1
m = bytes_to_long(b'flag{************************************}')
p = getprime(505)
q = getPrime(512)
r = getPrime(512)
assert m < q
n = p * q * r
e = 0x10001
d = invert(q ** 2, p ** 2)
c = pow(m, 2, r)
cipher = pow(c, e, n)
print(n)
print(d)
print(cipher)
'''
7941371739956577280160664419383740967516918938781306610817149744988379280561359039016508679365806108722198157199058807892703837558280678711420411242914059658055366348123106473335186505617418956630780649894945233345985279471106888635177256011468979083320605103256178446993230320443790240285158260236926519042413378204298514714890725325831769281505530787739922007367026883959544239568886349070557272869042275528961483412544495589811933856131557221673534170105409
7515987842794170949444517202158067021118454558360145030399453487603693522695746732547224100845570119375977629070702308991221388721952258969752305904378724402002545947182529859604584400048983091861594720299791743887521228492714135449584003054386457751933095902983841246048952155097668245322664318518861440
1618155233923718966393124032999431934705026408748451436388483012584983753140040289666712916510617403356206112730613485227084128314043665913357106301736817062412927135716281544348612150328867226515184078966397180771624148797528036548243343316501503364783092550480439749404301122277056732857399413805293899249313045684662146333448668209567898831091274930053147799756622844119463942087160062353526056879436998061803187343431081504474584816590199768034450005448200
'''

c = pow(m, 2, r)

from sympy.ntheory.residue_ntheory import nthroot_mod
m=nthroot_mod(c,2,r)

完整exp:

from gmpy2 import *
from Crypto.Util.number import *
from sympy.ntheory.residue_ntheory import nthroot_mod
p=102634610559478918970860957918259981057327949366949344137104804864768237961662136189827166317524151288799657758536256924609797810164397005081733039415393
q=7534810196420932552168708937019691994681052660068275906973480617604535381306041583841106383688654426129050931519275383386503174076258645141589911492908993
r=10269028767754306217563721664976261924407940883784193817786660413744866184645984238866463711873380072803747092361041245422348883639933712733051005791543841
e=65537
phi=(p-1)*(q-1)*(r-1)
d=invert(e,phi)
n=p*q*r
cipher=1618155233923718966393124032999431934705026408748451436388483012584983753140040289666712916510617403356206112730613485227084128314043665913357106301736817062412927135716281544348612150328867226515184078966397180771624148797528036548243343316501503364783092550480439749404301122277056732857399413805293899249313045684662146333448668209567898831091274930053147799756622844119463942087160062353526056879436998061803187343431081504474584816590199768034450005448200
c=pow(cipher,d,n)
m=nthroot_mod(c,2,r)
print(long_to_bytes(m))

Rabin RSA:

import gmpy2
import libnum
from Crypto.Util.number import long_to_bytes
p=13934102561950901579
q=14450452739004884887
e = 2
c = 20442989381348880630046435751193745753
n = p*q
# Rebin算法
mp = gmpy2.powmod(c, (p+1)//4, p)
mq = gmpy2.powmod(c, (q+1)//4, q)
gcd1, a, b= gmpy2.gcdext(p, q) # 欧几里得扩展a*p+b*q=gcd1
r=(a*p*mq+b*q*mp)%n
r_=n-r
s=(a*p*mq-b*q*mp)%n
s_=n-s
print(f"r={libnum.n2s(int(r))}")
print(f"r_={libnum.n2s(int(r_))}")
print(f"s={libnum.n2s(int(s))}")
print(f"s_={libnum.n2s(int(s_))}")

pq生成不当:

from Crypto.Util.number import *
import sympy
#from secrets import flag
def get_happy_prime():
p = getPrime(512)
q = sympy.nextprime(p ^ ((1 << 512) - 1))
return p, q
m = bytes_to_long(flag)
p, q = get_happy_prime()
n = p * q
e = 65537
print(n)
print(pow(m, e, n))
# 24852206647750545040640868093921252282805229864862413863025873203291042799096787789288461426555716785288286492530194901130042940279109598071958012303179823645151637759103558737126271435636657767272703908384802528366090871653024192321398785017073393201385586868836278447340624427705360349350604325533927890879
# 14767985399473111932544176852718061186100743117407141435994374261886396781040934632110608219482140465671269958180849886097491653105939368395716596413352563005027867546585191103214650790884720729601171517615620202183534021987618146862260558624458833387692782722514796407503120297235224234298891794056695442287

q等于p取反的下一个素数

qp((1<<512)1)

q=(1<<512)p+r

p+q(1<<512)

所以我们可以构造

n=(p+q2)2(pq2)2

因此可以求出pq的值,因此 p=(p+q)(pq)2

因此可以求出p的值

exp1:(以p能不能整除n作为判断条件)

from Crypto.Util.number import *
import gmpy2
n=24852206647750545040640868093921252282805229864862413863025873203291042799096787789288461426555716785288286492530194901130042940279109598071958012303179823645151637759103558737126271435636657767272703908384802528366090871653024192321398785017073393201385586868836278447340624427705360349350604325533927890879
c=14767985399473111932544176852718061186100743117407141435994374261886396781040934632110608219482140465671269958180849886097491653105939368395716596413352563005027867546585191103214650790884720729601171517615620202183534021987618146862260558624458833387692782722514796407503120297235224234298891794056695442287
t1=1<<512
p=(2**512+gmpy2.iroot((2**512)**2-4*n,2)[0])//2
p=int(p)
while n%p!=0:
p=gmpy2.next_prime(p)
q=n//p
phi=(p-1)*(q-1)
d=gmpy2.invert(e,phi)
m=pow(c,d,n)
print(long_to_bytes(m))

exp2:(以(p+q)24n能不能开方作为判断条件)

from Crypto.Util.number import *
import gmpy2
n=24852206647750545040640868093921252282805229864862413863025873203291042799096787789288461426555716785288286492530194901130042940279109598071958012303179823645151637759103558737126271435636657767272703908384802528366090871653024192321398785017073393201385586868836278447340624427705360349350604325533927890879
c=14767985399473111932544176852718061186100743117407141435994374261886396781040934632110608219482140465671269958180849886097491653105939368395716596413352563005027867546585191103214650790884720729601171517615620202183534021987618146862260558624458833387692782722514796407503120297235224234298891794056695442287
for r in range(10000000000):
t1=(1<<512)-1+r
t2,s=gmpy2.iroot(t1**2-4*n,2)
if s:
p=(t1+t2)//2
q=n//p
d=gmpy2.invert(e,(p-1)*(q-1))
print(long_to_bytes(pow(c,d,n)))
break

p2+q2=N

使用sagemath的p,q=two_squares(N)

# #sage9.3
# from Crypto.Util.number import *
# flag = b'Kicky_Mu{KFC_v_me_50!!!}'
# p = getPrime(256)
# q = getPrime(256)
# n = p*q^3
# e = 0x10001
# N = pow(p, 2) + pow(q, 2)
# m = bytes_to_long(flag)
# c = pow(m,e,n)
#
# print(c)
# print(N)
from Crypto.Util.number import *
c = 34992437145329058006346797890363070594973075282993832268508442432592383794878795192132088668900695623924153165395583430068203662437982480669703879475321408183026259569199414707773374072930515794134567251046302713509056391105776219609788157691337060835717732824405538669820477381441348146561989805141829340641
N = 14131431108308143454435007577716000559419205062698618708133959457011972529354493686093109431184291126255192573090925119389094648901918393503865225710648658
p,q=two_squares(N)
n = p * pow(q, 3)
e = 0x10001
phi = (p - 1) * (pow(q, 3) - pow(q, 2))
d = inverse(e, phi)
m = pow(c, d, n)
print(long_to_bytes(m))

Coppersmith

已知m的高位,求m

n=10934282759418716864083387149400358148885247110933867252983794425632302624483291838978054379912661191455027376539730843211768681711588034738804296785076819
c=199928678441564572513071545433948014294972061145992950128884609861283198064457810780158231851803305318741555460032075238932950496972965422017125
(m>>72)<<72=584734024210391580014049648429032467639773954048
e=3

Zmod(n)下,有m3c0(mhigh+x)3c0

exp:

from Crypto.Util.number import *
def phase2(high_m, n, c):
R.<x> = PolynomialRing(Zmod(n), implementation='NTL')
m = high_m + x
M = m((m^3 - c).small_roots()[0])
return M
n = 10934282759418716864083387149400358148885247110933867252983794425632302624483291838978054379912661191455027376539730843211768681711588034738804296785076819
c = 199928678441564572513071545433948014294972061145992950128884609861283198064457810780158231851803305318741555460032075238932950496972965422017125
high_m = 584734024210391580014049648429032467639773954048
M=phase2(high_m, n, c)
print(long_to_bytes(int(M)))

flag{this_is_a_flag}

已知p的高位,求m

n = 22251179507951667208988404735324990388496950479821651652239579051045817986824945842987389922759437945557559748313907295712994332924679954306619009079508267870910149223565520196385455171091011721532290110253401719887456896015127869765120008086727571060297059461651083340986173237394309195529977693665449059967337557768799655172974710341929078477027816362721220950313898766868468203962782247110726810571421671360963619837700834009507913757260784147014841481557088215597539779565493898663380798904766007590175316989637076522379230279938065198199833033309266088268398369881039750675835382713087914092008694800853680890199
c = 13791076590876280345965238373786427523823675722374540431144373789735114060078921115309660269509771288228144711168452947459244770278987545774287579571059845423259662466243727180866431665100157413245622442955953683599217851246153754699865188329020209657227990460455369896960050383820265224545863644175721361758413632638638545353172694886999221882770404353366722168355187142789778530832186215934690392286482192890311329246011772739859918291556448869621490688586398693159275264761107488552610343215662469995425523594866854716852872141401095283180173839653418794273521904566990987307557028155209305585359720312859989634334
(p>>128)<<128 = 150840505999598161819551431768821975459467574249752039047846845481249241887784911457438773307473629946085877682693884024926228559996574370474982369597013808808768450992113314638371133051992554697609546180277873202687064844984114775286878743211353292718680724328420518679703560272767696234210910831061812379648

exp:

from Crypto.Util.number import *
def phase3(high_p, n, c):
R.<x> = PolynomialRing(Zmod(n), implementation='NTL')
p = high_p + x
x0 = p.small_roots(X = 2^128, beta = 0.1,epsilon=0.02)[0]
P = int(p(x0))
Q = n // P
assert n == P*Q
d = inverse_mod(65537, (P-1)*(Q-1))
#print(power_mod(c, d, n))
return power_mod(c,d,n)
n = 22251179507951667208988404735324990388496950479821651652239579051045817986824945842987389922759437945557559748313907295712994332924679954306619009079508267870910149223565520196385455171091011721532290110253401719887456896015127869765120008086727571060297059461651083340986173237394309195529977693665449059967337557768799655172974710341929078477027816362721220950313898766868468203962782247110726810571421671360963619837700834009507913757260784147014841481557088215597539779565493898663380798904766007590175316989637076522379230279938065198199833033309266088268398369881039750675835382713087914092008694800853680890199
c = 13791076590876280345965238373786427523823675722374540431144373789735114060078921115309660269509771288228144711168452947459244770278987545774287579571059845423259662466243727180866431665100157413245622442955953683599217851246153754699865188329020209657227990460455369896960050383820265224545863644175721361758413632638638545353172694886999221882770404353366722168355187142789778530832186215934690392286482192890311329246011772739859918291556448869621490688586398693159275264761107488552610343215662469995425523594866854716852872141401095283180173839653418794273521904566990987307557028155209305585359720312859989634334
high_p = 150840505999598161819551431768821975459467574249752039047846845481249241887784911457438773307473629946085877682693884024926228559996574370474982369597013808808768450992113314638371133051992554697609546180277873202687064844984114775286878743211353292718680724328420518679703560272767696234210910831061812379648
M=phase3(high_p, n, c)
print(M)
print(long_to_bytes(M))

已知p的若干中间位

from Crypto.Util.number import *
flag = b'?'
e = 65537
p, q = getPrime(1024), getPrime(1024)
N = p * q
gift = p&(2**923-2**101)
m = bytes_to_long(flag)
c = pow(m, e, N)
print("N = ",N)
print("gift = ",gift)
print("c = ",c)
"""
N = 12055968471523053394851394038007091122809367392467691213651520944038861796011063965460456285088011754895260428814358599592032865236006733879843493164411907032292051539754520574395252298997379020268868972160297893871261713263196092380416876697472160104980015554834798949155917292189278888914003846758687215559958506116359394743135211950575060201887025032694825084104792059271584351889134811543088404952977137809673880602946974798597506721906751835019855063462460686036567578835477249909061675845157443679947730585880392110482301750827802213877643649659069945187353987713717145709188790427572582689339643628659515017749
p0 = 70561167908564543355630347620333350122607189772353278860674786406663564556557177660954135010748189302104288155939269204559421198595262277064601483770331017282701354382190472661583444774920297367889959312517009682740631673940840597651219956142053575328811350770919852725338374144
c = 2475592349689790551418951263467994503430959303317734266333382586608208775837696436139830443942890900333873206031844146782184712381952753718848109663188245101226538043101790881285270927795075893680615586053680077455901334861085349972222680322067952811365366282026756737185263105621695146050695385626656638309577087933457566501579308954739543321367741463532413790712419879733217017821099916866490928476372772542254929459218259301608413811969763001504245717637231198848196348656878611788843380115493744125520080930068318479606464623896240289381601711908759450672519228864487153103141218567551083147171385920693325876018
"""

exp:

N = 12055968471523053394851394038007091122809367392467691213651520944038861796011063965460456285088011754895260428814358599592032865236006733879843493164411907032292051539754520574395252298997379020268868972160297893871261713263196092380416876697472160104980015554834798949155917292189278888914003846758687215559958506116359394743135211950575060201887025032694825084104792059271584351889134811543088404952977137809673880602946974798597506721906751835019855063462460686036567578835477249909061675845157443679947730585880392110482301750827802213877643649659069945187353987713717145709188790427572582689339643628659515017749
p0 = 70561167908564543355630347620333350122607189772353278860674786406663564556557177660954135010748189302104288155939269204559421198595262277064601483770331017282701354382190472661583444774920297367889959312517009682740631673940840597651219956142053575328811350770919852725338374144
c = 2475592349689790551418951263467994503430959303317734266333382586608208775837696436139830443942890900333873206031844146782184712381952753718848109663188245101226538043101790881285270927795075893680615586053680077455901334861085349972222680322067952811365366282026756737185263105621695146050695385626656638309577087933457566501579308954739543321367741463532413790712419879733217017821099916866490928476372772542254929459218259301608413811969763001504245717637231198848196348656878611788843380115493744125520080930068318479606464623896240289381601711908759450672519228864487153103141218567551083147171385920693325876018
def bivariate(pol, XX, YY, kk=4):
N = pol.parent().characteristic()
f = pol.change_ring(ZZ)
PR, (x, y) = f.parent().objgens()
idx = [(k - i, i) for k in range(kk + 1) for i in range(k + 1)]
monomials = list(map(lambda t: PR(x ** t[0] * y ** t[1]), idx))
# collect the shift-polynomials
g = []
for h, i in idx:
if h == 0:
g.append(y ** h * x ** i * N)
else:
g.append(y ** (h - 1) * x ** i * f)
# construct lattice basis
M = Matrix(ZZ, len(g))
for row in range(M.nrows()):
for col in range(M.ncols()):
h, i = idx[col]
M[row, col] = g[row][h, i] * XX ** h * YY ** i
# LLL
B = M.LLL()
PX = PolynomialRing(ZZ, 'xs')
xs = PX.gen()
PY = PolynomialRing(ZZ, 'ys')
ys = PY.gen()
# Transform LLL-reduced vectors to polynomials
H = [(i, PR(0)) for i in range(B.nrows())]
H = dict(H)
for i in range(B.nrows()):
for j in range(B.ncols()):
H[i] += PR((monomials[j] * B[i, j]) / monomials[j](XX, YY))
# Find the root
poly1 = H[0].resultant(H[1], y).subs(x=xs)
poly2 = H[0].resultant(H[2], y).subs(x=xs)
poly = gcd(poly1, poly2)
x_root = poly.roots()[0][0]
poly1 = H[0].resultant(H[1], x).subs(y=ys)
poly2 = H[0].resultant(H[2], x).subs(y=ys)
poly = gcd(poly1, poly2)
y_root = poly.roots()[0][0]
return x_root, y_root
PR = PolynomialRing(Zmod(N), names='x,y')
x, y = PR.gens()
pol = 2 ** 923 * x + y + p0
x, y = bivariate(pol, 2 ** 101, 2 ** 101)
p = 2 ** 923 * x + y + p0
q = N // p
print(p)
print(q)
phi=(p-1)*(q-1)
e=65537
d=inverse(e,phi)
m=pow(c,d,N)
print(long_to_bytes(int(m)))

本文作者:Smera1d0

本文链接:https://www.cnblogs.com/Smera1d0/p/18191750

版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。

posted @   Smera1d0  阅读(515)  评论(0编辑  收藏  举报
  1. 1 郑润泽
  2. 2 如果呢 郑润泽
如果呢 - 郑润泽
00:00 / 00:00
An audio error has occurred, player will skip forward in 2 seconds.

作词 : 郑润泽

作曲 : 郑润泽

编曲 : 赵建飞

制作人 : 李淘/赵建飞

出品:网易音乐人 X 青云LAB

幻想中的行星

平行与天际

你说过的话语

是那么平静

能记得我的好

能记得我的好

也能够忘掉我

迟早

我的心里仍屹立着座城堡

不知为何

不知为何

无法感受得到

你的不舍

你是如何能够

轻易做得到

如果说是真的爱我

如果说是真的爱我

那为何都说不出口

一大堆的所以然呢

我脑海只剩为什么

就让我

放下所有回忆

所有事情不那么清晰

也许

会好

比较

幻想中的行星

平行与天际

你说过的话语

是那么平静

说记得我的好

说记得我的好

也能够忘掉我

迟早

数不清这是第几次

我也不知道

如果说是真的爱我

如果说是真的爱我

那为何都说不出口

一大堆的所以然呢

我脑海只剩为什么

就让我

放下所有回忆

所有事情不那么清晰

也许

会好

比较

如果说是真的爱我

如果说是真的爱我

那为何都说不出口

一大堆的所以然呢

我脑海只剩为什么

就让我

放下所有回忆

所有事情不那么清晰

也许

会好

比较

也许

会好

比较

出品:青桔音乐

编曲 : 赵建飞

吉他:周少伟

和声编写:曾婕Joey.Z

和声演唱:曾婕Joey.Z

人声录音师:赵野

人声录音棚:3RD Harmonic Music

弦乐编写:赵建飞

弦乐监制:李朋

弦乐:国际首席爱乐乐团

弦乐录音棚:金田录音棚

混音师:钟泽鑫

企划:潘俊

营销企划:罗旭 牛雪吟

网易云音乐特别企划“星辰集”出品

网易云音乐特别企划“星辰集”出品

评论
收藏
关注
推荐
深色
回顶
收起
点击右上角即可分享
微信分享提示