CryptoHack做题记录
一、GENERAL
1.ENCODING
ASCII
ascii = [99, 114, 121, 112, 116, 111, 123, 65, 83, 67, 73, 73, 95, 112, 114, 49, 110, 116, 52, 98, 108, 51, 125]
for char in ascii:
print(chr(char),end='')
crypto{ASCII_pr1nt4bl3}
Hex
Hex='63727970746f7b596f755f77696c6c5f62655f776f726b696e675f776974685f6865785f737472696e67735f615f6c6f747d'
print(bytes.fromhex(Hex))
crypto{You_will_be_working_with_hex_strings_a_lot}
Bytes and Big Integers
from Crypto.Util.number import *
Long = 11515195063862318899931685488813747395775516287289682636499965282714637259206269
print(long_to_bytes(Long))
crypto{3nc0d1n6_4ll_7h3_w4y_d0wn}
2.XOR
XOR Starter
String='label'
for i in String:
print(chr(ord(i)^13),end='')
crypto{aloha}
XOR Properties
from Crypto.Util.number import *
KEY1 = 0xa6c8b6733c9b22de7bc0253266a3867df55acde8635e19c73313
KEY2_KEY1 = 0x37dcb292030faa90d07eec17e3b1c6d8daf94c35d4c9191a5e1e
KEY2_KEY3 = 0xc1545756687e7573db23aa1c3452a098b71a7fbf0fddddde5fc1
FLAG_KEY1_KEY3_KEY2 = 0x4ee9855208a2cd59091d04767ae47963170d1660df7f56f5faf
print(long_to_bytes(FLAG_KEY1_KEY3_KEY2^KEY2_KEY3^KEY1))
crypto{x0r_i5_ass0c1at1v3}
Favourite byte
from Crypto.Util.number import *
a=0x73626960647f6b206821204f21254f7d694f7624662065622127234f726927756d
print(long_to_bytes(a))
A=b"sbi`d\x7fk h! O!%O}iOv$f eb!'#Ori'um"
B=b'crypto{'
for i,j in zip(A,B):
print(i^j)
for i in A:
print(chr(i^16),end='')
- 思路:已知flag头:
crypto{
根据此可找到异或的字节
crypto{0x10_15_my_f4v0ur173_by7e}
You either know, XOR you don't
-
思路:我们已知flag头为
crypto{}
我们可以根据这个恢复key
from Crypto.Util.number import *
from pwn import *
a = 0x0e0b213f26041e480b26217f27342e175d0e070a3c5b103e2526217f27342e175d0e077e263451150104
A = b"\x0e\x0b!?&\x04\x1eH\x0b&!\x7f'4.\x17]\x0e\x07\n<[\x10>%&!\x7f'4.\x17]\x0e\x07~&4Q\x15\x01\x04"
B = b'crypto{'
print(xor(long_to_bytes(a), B))
print(xor(b'\x04', b'}'))
恢复出key为:myXORkey
然后解密:
print(xor(long_to_bytes(a),b'myXORkey'))
crypto{1f_y0u_Kn0w_En0uGH_y0u_Kn0w_1t_4ll}
Lemur XOR
两张图片的RGB分别xor:
from PIL import Image
image1 = Image.open(r"D:\download\flag_7ae18c704272532658c10b5faad06d74.png")
pic1 = image1.load()
image2 = Image.open(r"D:\download\lemur_ed66878c338e662d3473f0d98eedbd0d.png")
pic2 = image2.load()
width, height = image1.size
for i in range(width):
for j in range(height):
r1, g1, b1 = pic1[i, j]
r2, g2, b2 = pic2[i, j]
pic1[i, j] = (r1 ^ r2, g1 ^ g2, b1 ^ b2)
image1.show()
3.MATHMATICS
Greatest Common Divisor
求gcd(66528,52920),没什么好说的
Extended GCD
拓展欧几里得:
Modular Arithmetic 1
求余数,略
Modular Arithmetic 2
欧拉定理:
若a和m互质,即\((a,m)\equiv 1\),有\(a^{\varphi(m)}\equiv 1(modm)\)
题目让Calculate 27324678765465536 mod 65537
显然为1
Modular Inverting
求3 * d ≡ 1 mod 13,也就是求3对模13的模逆
print(gmpy2.invert(3,13))
二、MATHEMATICS
1.MODULAR MATH
Quadratic Residues
p = 29
ints = [14, 6, 11]
让我们找出ints列表里模p的二次剩余,需要用到欧拉判别法:
写一个脚本判断一下即可:
ints = [14, 6, 11]
p = 29
for t in ints:
for i in range(1, p):
if pow(i, 2, p) == t:
print(f"{i} ^ 2 = {t} mod 29")
Legendre Symbol
p =
ints = []
我们要求满足\(x^2\equiv ints(modp)\)的x的值
我们需要找到,ints中的这些数,哪些满足\((\frac{a}{p})=1\)
可以写个脚本:
p =
ints = []
num = 0
for a in ints:
if pow(a, p // 2, p) == 1:
print(a)
发现85256449776780591202928235662805033201684571648990042997557084658000067050672130152734911919581661523957075992761662315262685030115255938352540032297113615687815976039390537716707854569980516690246592112936796917504034711418465442893323439490171095447109457355598873230115172636184525449905022174536414781771满足条件
然后根据\((\frac{a}{p})=a^{\frac{p-1}{2}}(modp)\equiv1\)
变形:\(a^{\frac{p+1}{2}}(modp)\equiv a\)
即:$(a^{\frac{p+1} {4}})^{2}\equiv a(modp) $
而正好p是模4余3的,则\(a^{\frac{p+1}{4}}(modp)\)就是我们要找的根
print(pow(a,p//4+1,p))
即为flag
Modular Square Root
使用Tonelli-Shanks算法计算二次剩余
可以用python的sympy模块实现
给出a和p的值,计算\(a^2=x(modp)\)中x的值
from sympy.ntheory.residue_ntheory import nthroot_mod
a =
p =
x = nthroot_mod(a,2,p)
print(x)
Chinese Remainder Theorem
中国剩余定理(CRT)
x ≡ 2 mod 5
x ≡ 3 mod 11
x ≡ 5 mod 17
直接使用sagemath