数学之地

让我们来锻练数学的功底吧!

\(\mathfrak{P.S.}\)我并不认为你们傻,我只是想要随便写写而已
——\(\color{LimeGreen}{\text{SmallBlack}}\)

章节

\(\mathcal{I}\) 几何板块

\(\ \ \ \ \mathbb{ .}\) 几何入门

\(\ \ \ \ \ \ \ \ \mathtt{I.}\) 点与线

\(\ \ \ \ \mathbb{I}\).直线的相交

\(\ \ \ \ \ \ \ \ \mathtt{I.}\) 相交

\(\ \ \ \ \ \ \ \ \ \ \ \ \mathfrak{i.}\)推论

\(\ \ \ \ \ \ \ \ \ \ \ \ \mathfrak{ii.}\)证明:

\(\ \ \ \ \ \ \ \ \mathtt{II.}\)特殊情况:

\(\ \ \ \ \mathbb{II}\).平行线的性质及判定

\(\ \ \ \ \ \ \ \ \mathtt{I.}\)定义

\(\ \ \ \ \ \ \ \ \mathtt{II.}\)基本事实

\(\ \ \ \ \ \ \ \ \mathtt{III.}\)推论

\(\ \ \ \ \ \ \ \ \mathtt{IV.}\)证明

\(\ \ \ \ \ \ \ \ \ \ \ \ \mathfrak{(1)}\)

\(\ \ \ \ \ \ \ \ \ \ \ \ \mathfrak{(2)}\)

\(\ \ \ \ \ \ \ \ \ \ \ \ \mathfrak{(3)}\)

\(\ \ \ \ \ \ \ \ \ \ \ \ \mathfrak{(4)}\)


直接裂开

\(\mathcal{I.}\)几何板块

\(\mathbb{\ .}\) 几何入门

(不是我的\(\LaTeX\)炸了,是罗马数字里本来就没有0(雾))

  • 我们把点,线,面,体\(\mathtt{4}\)整数维空间(对应\(\mathtt{0}-\mathtt{3}\)维)称为几何图形,其中"体"称作立体图形,其余三类称作平面图形我们重点考虑平面图形.

\(\mathtt{I.}\) 线

\(\mathfrak{i.}\)类型

一般的,线分为三类:

\(\text{线}\begin{cases}\text{直线}\\\text{射线}\\\text{线段}\end{cases}\)

\(\mathfrak{ii.}\)特点:

线

线的类型 区别 读法 方向性
直线 无端点 直线\(AB\),直线\(BA\),直线\(f\)
射线 有一个端点 射线\(CD\)
线段 有两个端点 线段\(EF\),线段\(FE\)

\(\mathfrak{iii.}\)相关定义:

  • \(C\)把线段\(AB\)分为两条线段\(AC\)\(BC\),如果\(AC=BC\),那我们称点\(C\)是线段\(AB\)中点

\(\mathfrak{iv.}\)基本事实:

\(\mathtt{1.}\) 两点确定一条直线

\(\mathtt{2.}\) 两点之间线段最短

\(\mathtt{II.}\)

  • 是两条有公共端点的射线组成的图形,这个公共端点称作这个角的顶点,角也可以看作是一条射线绕他的端点旋转后形成的图形,起始的位置称作角的始边,终止的位置称作角的终边

\(\mathfrak{i}.\) 表示方式

我们使用\(\angle\)($\angle$)来表示角

图1

\(\mathtt{1.}\) 使用三个大写字母表示,如图1,可表示为\(\angle BAC\)

\(\mathtt{2.}\) 在不会引发歧义的情况下,我们使用这个角顶点的字母表示这个角,如图1,可表示为\(\angle A\),但图2中的\(\angle CBD\)不能使用\(\angle B\)代替,因为\(\angle B\)可能表示\(\angle ABC\)或者\(\angle CBD\)

\(\mathtt{3.}\) 我们可以使用一个希腊字母或数字来表示一个角,如图1,可表示为\(\angle\alpha\)

\(\mathbb{I}\).直线的相交

  • 在同一平面内,两条直线有如下情况:相交平行

\(\mathtt{I.}\) 相交

\(\mathfrak{i.}\)推论

\(\mathtt{1.}\)对顶角相等

\(\mathtt{2.}\)邻补角互补

0Yu8JS.png

\(\mathfrak{ii.}\) 证明

如图,直线\(AB\)与直线\(CD\)交于一点\(E\)

\(\because \angle AEB=\angle CED=180^\circ\)

\(\therefore \angle AEC+\angle BEC=180^\circ\)

\(\angle CEA+\angle DEA=180^\circ\)

\(\angle AED+\angle BED=180^\circ\)

\(\angle CEB+\angle DEB=180^\circ,\)即邻补角互补

\(\therefore \angle AEC=\angle BED,\angle AED=\angle BEC,\)即对顶角相等

\(\mathtt{II.}\)垂直:

  • 当两条相交的直线所构成的四个夹角中有一个为\(90^\circ\),我们说这两条直线互相垂直,其中一条叫做另一条的垂线,两条直线的交点被称作垂足

\(\mathbb{II}\).平行线的性质及判定

\(\mathtt{I.}\)定义

  • 在同一平面内不相交的两条直线互相平行.

\(\mathtt{II.}\)基本事实

\(\mathtt{1.}\)同位角相等,两直线平行

\(\mathtt{2.}\)两直线平行,同位角相等

\(\mathtt{III.}\)推论

\(\mathtt{1.}\)内错角相等,两直线平行

\(\mathtt{2.}\)同旁内角互补,两直线平行

\(\mathtt{3.}\)两直线平行,内错角相等

\(\mathtt{4.}\)两直线平行,同旁内角互补

\(\mathtt{IV.}\)证明

平行

如图,在一个平面中有一条直线\(AB\)及线外一点\(C\),过\(C\)点作直线\(CF\),再画一条不与直线\(AB\)平行的直线\(GH\),分别交直线\(AB,CD\)于点\(D,E\)

\(\mathfrak{(1)}\)

已知:\(\angle ADE=\angle FED\)
求证:\(CF//AB\)
证:

\(\because AB\)\(GH\)交于点\(D\)(已知)

\(\therefore \angle ADE=\angle BDG\)(对顶角相等)

\(\because \angle ADE=\angle FED\)(已知)

\(\therefore \angle BDG=\angle FED\)(等量代换)

\(\therefore CF//AB\)(同位角相等,两直线平行)

\(\mathfrak{(2)}\)

已知:\(CF//AB\)
求证:\(\angle ADE=\angle FED\)
证:

\(\because CF//AB\)(已知)

\(\therefore \angle BDG=\angle FED\)(两直线平行,同位角相等)

\(\because AB\)\(GH\)交于点\(D\)(已知)

\(\therefore \angle ADE=\angle BDG\)(对顶角相等)

\(\therefore \angle ADE=\angle FED\)(等量代换)

\(\mathfrak{(3)}\)

已知:\(\angle ADE+\angle CED=180^\circ\)
求证:\(CF//AB\)
证:

\(\because CF\)\(GH\)交于点\(E\)(已知)

\(\therefore \angle CED+\angle FED=180^\circ\)(邻补角互补)

\(\because \angle ADE+\angle CED=180^\circ\)(已知)

\(\therefore \angle ADE=\angle FED\)(同角的补角相等)

\(\therefore CF//AB\)(内错角相等,两直线平行)

\(\mathfrak{(4)}\)

已知:\(CF//AB\)
求证:\(\angle ADE+\angle CED=180^\circ\)
证:

\(\because CF//AB\)(已知)

\(\therefore \angle ADE=\angle FED\)(两直线平行,内错角相等)

\(\because CF\)\(GH\)交于点\(E\)(已知)

\(\therefore \angle CED+\angle FED=180^\circ\)(邻补角互补)

\(\therefore \angle ADE+\angle CED=180^\circ\)(等量代换)


梅开二度

\(\text{upd:开学了,爷的青春结束了,我要开始咕咕了}\)
\\更新字典:
\\XX板块(double r)
\\r:更新进度
  1. 加入 相交\(1\),垂直\(0.1\),平行\(0.9\)
  2. 加入 几何入门\(0.3\)

\(\mathtt{Waiting...}\)(有意见请在下方评论)

posted @ 2020-10-20 19:34  The_Euclidea_Witness  阅读(63)  评论(0编辑  收藏  举报