bzoj 1833: [ZJOI2010]count 数位dp
题目:
给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。
题解
设\(f[i][j]\)表示长度为\(i\)的所有合法数字中有多少数码\(j\)
设\(g[i][j]\)表示长度为\(i\)的可有前导零的数字中有多少数码\(j\)
然后恶心不想说了.
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(ll &x){
x=0;static char ch;static bool flag;flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
#define rg register int
#define rep(i,a,b) for(rg i=(a);i<=(b);++i)
#define per(i,a,b) for(rg i=(a);i>=(b);--i)
const int maxn = 22;
ll f[maxn][maxn],g[maxn][maxn];
int a[maxn],cnt;
inline void init(int n){
rep(i,0,9){
g[1][i] = 1;
if(i) f[1][i] = 1;
}
ll pw = 1;
rep(i,2,n){
pw *= 10;
rep(j,0,9){
g[i][j] = 10*g[i-1][j] + pw;
f[i][j] = 9*g[i-1][j];
if(j != 0) f[i][j] += pw;
}
}
}
ll solve(ll n,int x){
if(n == 0) return 0;
int cnt = 0;
ll ans = 0;
static int a[maxn];
while(n){
a[++cnt] = n % 10;
if(a[cnt] == x) ++ ans;
n /= 10;
}
ll pw = 1;
rep(i,1,cnt) pw *= 10;
ll tmp = 0;
per(i,cnt,1){
pw /= 10;
ans += tmp*a[i]*pw;
if(i == cnt){
ans += (a[i] - 1)*g[i-1][x];
if(x && x < a[i]) ans += pw;
}else{
ans += a[i]*g[i-1][x];
if(x < a[i]) ans += pw;
}
if(a[i] == x) ++ tmp;
}
rep(i,1,cnt-1) ans += f[i][x];
return ans;
}
int main(){
init(13);
ll l,r;read(l);read(r);
rep(i,0,9){
printf("%lld",solve(r,i) - solve(l-1,i));
if(i != 9) putchar(' ');
else putchar('\n');
}
return 0;
}
人就像命运下的蝼蚁,谁也无法操控自己的人生.