四维偏序 CDQ套CDQ

对CDQ深一步的理解

昨天做了一道CDQ,看了一堆CDQ可做的题,今天又做了一道四维偏序
感觉对CDQ的理解又深了一点,故来写一写现在自己对于CDQ的理解
CDQ其实就是实现了这样的一个问题的转化:
\(a_{l} < a_{l+1} < ... < a_r => (a_l,a_{l+1},...,a_{mid}) \text{都小于} (a_{mid+1},a{mid+2},...,a_r)\)
然后我们就知道这时候左边所有的点都一定小于右边的点
在四维偏序的算法中,那就是左边的点可以对右边的点做出贡献(仅在当前维度下)
这样就强行消除了一个维度的限制.

四维偏序

COGS 2479

题目大意

给定一个有\(n\)个元素的序列,元素编号为\(1~n\),每个元素有三个属性\(a,b,c\),求序列中满足\(i<j\)\(a_i<a_j\)\(b_i<b_j\)\(c_i<c_j\)的数对\((i,j)\)的个数。

题解

我们把下标也看作一个维度,那么这就是个四维偏序
我们在下标的维度上CDQ
然后记录每个元素在第一次CDQ中是较小的还是较大的.
因为只有较小的元素才能对较大的元素做出贡献
只有较大的元素才能接受较小的元素的影响.
所以我们处理出来后这就变成了一个三维偏序
所以我们在对这个序列(CDQ+扫描线+树状数组)求三维偏序即可

Code

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
	x=0;char ch;bool flag = false;
	while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
	while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 50010;
struct Node{
	int a,b,c;
	bool is_sm;
	Node(){a=b=c=is_sm = 0;}
}a[maxn],tmp1[maxn],tmp2[maxn];
int c[maxn],n,init_tmp[maxn],ans=0;
#define lowbit(x) (x&-x)
inline void modify(int x,int y){
	for(;x<=n;x+=lowbit(x)) c[x] += y;
}
inline int query(int x){
	int ret = 0;
	for(;x;x-=lowbit(x)) ret += c[x];
	return ret;
}
void solve2(int l,int r){
	if(l == r) return ;
	int mid = l+r >> 1;
	solve2(l,mid);solve2(mid+1,r);
	int i = l,j = mid+1,k = l;
	Node *a = tmp1,*tmp = tmp2;
	init_tmp[0] = 0;
	while(i <= mid || j <= r){
		if((j > r) || (i <= mid && a[i].b < a[j].b)){
			if( a[i].is_sm){
				modify(a[i].c,1);
				init_tmp[++init_tmp[0]] = i;
			}tmp[k++] = a[i++];
		}else{
			if(!a[j].is_sm){
				ans += query(a[j].c);
			}tmp[k++] = a[j++];
		}
	}for(int i = 1;i<=init_tmp[0];++i) modify(a[init_tmp[i]].c,-1);
	copy(tmp+l,tmp+r+1,a+l);
}
void solve1(int l,int r){
	if(l == r) return ;
	int mid = l+r >> 1;
	solve1(l,mid);solve1(mid+1,r);
	int i = l,j = mid+1,k = l;
	Node *tmp = tmp1;
	while(i <= mid || j <= r){
		if((j > r) || (i <= mid && a[i].a < a[j].a)){
			(tmp[k++] = a[i++]).is_sm = true;
		}else (tmp[k++] = a[j++]).is_sm = false;
	}
	copy(tmp+l,tmp+r+1,a+l);
	solve2(l,r);
}
int main(){
//	freopen("partial_order.in","r",stdin);
//	freopen("partial_order.out","w",stdout);
	read(n);
	for(int i=1;i<=n;++i) read(a[i].a);
	for(int i=1;i<=n;++i) read(a[i].b);
	for(int i=1;i<=n;++i) read(a[i].c);
	solve1(1,n);printf("%d\n",ans);
	getchar();getchar();
	return 0;
} 
posted @ 2017-02-16 13:44  Sky_miner  阅读(812)  评论(0编辑  收藏  举报