k路归并:数组、链表

/**
 * 解法1:逐个合并数组,时间复杂度O(n*k),n >> k
 * 合并k个排序(升序)数组
 * http://www.lintcode.com/zh-cn/problem/merge-k-sorted-arrays/
 * @author yzwall
 */
class Solution {
    public List<Integer> mergekSortedArrays(int[][] arrays) {
        ArrayList<Integer> list = new ArrayList<Integer>();
        if (arrays == null || arrays.length == 0 || arrays[0].length == 0) {
            return list;
        }
        if (arrays.length == 1) {
            Arrays.sort(arrays[0]);
            for (int num : arrays[0]) {
                list.add(num);
            }
            return list;
        }
        
        int[] temp = mergeTwoArrays(arrays[0], arrays[1]);
        for (int i = 2; i < arrays.length; i++) {
            temp = mergeTwoArrays(temp, arrays[i]);
        }
        for (int num : temp) {
            list.add(num);
        }
        return list;
    }
    
    private int[] mergeTwoArrays(int[] A, int[] B) {
        if (A.length == 0 || B.length == 0) {
            return new int[0];
        }
        int[] temp = new int[A.length + B.length];
        int index = 0, i = 0, j = 0;
        while (i < A.length && j < B.length) {
            if (A[i] < B[j]) {
                temp[index++] = A[i++];
            } else {
                temp[index++] = B[j++];
            }
        }
        while (i < A.length) {
            temp[index++] = A[i++];
        }
        while (j < B.length) {
            temp[index++] = B[j++];
        }
        return temp;
    }
}

/**
 * 解法2:分治法K路归并,时间复杂度O(n logk)
 * 合并k个排序(升序)数组
 * http://www.lintcode.com/zh-cn/problem/merge-k-sorted-arrays/
 * @author yzwall
 */    
class Solution20 {
    public List<Integer> mergekSortedArrays(int[][] arrays) {
        ArrayList<Integer> list = new ArrayList<Integer>();
        if (arrays == null || arrays.length == 0 || arrays[0].length == 0) {
            return list;
        }
        int[] ans = kMergeSort(arrays, 0, arrays.length - 1);
        for (int num : ans) {
            list.add(num);
        }
        return list;
    }
    
    // 分治递归深度为O(log k), 每层合并时间复杂度O(n)
    private int[] kMergeSort(int[][] arrays, int start, int end) {
        if (start >= end) {
            return arrays[start];
        }
        int mid = start + (end - start) / 2;
        int[] left = kMergeSort(arrays, start, mid);
        int[] right = kMergeSort(arrays, mid + 1, end);
        return mergeTwoArrays(left, right);
    }
    
    private int[] mergeTwoArrays(int[] A, int[] B) {
        int[] temp = new int[A.length + B.length];
        int index = 0, i = 0, j = 0;
        while (i < A.length && j < B.length) {
            if (A[i] < B[j]) {
                temp[index++] = A[i++];
            } else {
                temp[index++] = B[j++];
            }
        }
        while (i < A.length) {
            temp[index++] = A[i++];
        }
        while (j < B.length) {
            temp[index++] = B[j++];
        }
        return temp;
    }
}

/**
 * 解法3:最小堆实现K路归并,时间复杂度O(n logk)
 * 合并k个排序(升序)数组
 * http://www.lintcode.com/zh-cn/problem/merge-k-sorted-arrays/
 * @author yzwall
 */
class Solution18 {
    private class NewInteger {
        int value, row, col;
        public NewInteger(int value, int row, int col) {
            this.value = value;
            this.row = row;
            this.col = col;
        }
    }
    
    public List<Integer> mergekSortedArrays(int[][] arrays) {
        ArrayList<Integer> list = new ArrayList<Integer>();
        if (arrays == null || arrays.length == 0 || arrays[0].length == 0) {
            return list;
        }
        PriorityQueue<NewInteger> pq = new PriorityQueue<>(arrays.length, new Comparator<NewInteger>() {
            public int compare(NewInteger o1, NewInteger o2) {
                return o1.value < o2.value ? -1 : 1;
            }
        });
        
        for (int i = 0; i < arrays.length; i++) {
            pq.offer(new NewInteger(arrays[i][0], i, 0));
        }
        while (!pq.isEmpty()) {
            NewInteger min = pq.poll();
            if (min.col + 1 < arrays[min.row].length) {
                pq.offer(new NewInteger(arrays[min.row][min.col + 1], min.row, min.col + 1));
            }
            list.add(min.value);
        }
        
        return list;
    }
}

/**
 * 解法4:暴力方法,将所有数组添加到List,统一排序,时间复杂度O(n*k + nlogn), n >> k
 * 合并k个排序(升序)数组
 * http://www.lintcode.com/zh-cn/problem/merge-k-sorted-arrays/
 * @author yzwall
 */
class Solution19 {
    public List<Integer> mergekSortedArrays(int[][] arrays) {
        ArrayList<Integer> list = new ArrayList<Integer>();
        if (arrays == null || arrays.length == 0 || arrays[0].length == 0) {
            return list;
        }
        for (int i = 0; i < arrays.length; i++) {
            addToList(list, arrays[i]);
        }
        Collections.sort(list);
        return list;
    }
    
    private void addToList(ArrayList<Integer>list, int[] nums) {
        for (int num : nums) {
            list.add(num);
        }
    }
}

  

上面的代码转载自:K路归并问题小结

在LeetCode 23中是合并k路链表

23. Merge k Sorted Lists

自己的代码如下,采用的是优先级队列

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
class Solution {
    private class MinHeapComparator implements Comparator<ListNode>{
        public int compare(ListNode node1, ListNode node2){
            return node1.val - node2.val;
        }
    }
    
    public ListNode mergeKLists(ListNode[] lists) {
        ListNode res = new ListNode(0);
        if(lists.length <= 0) return null;
        if(lists.length == 1) return lists[0];
        PriorityQueue<ListNode> queue = new PriorityQueue<>(new MinHeapComparator());
        for(int i = 0; i < lists.length; i++){
            if(lists[i] != null)
                queue.offer(lists[i]);
        }
        ListNode node = res;
        while(!queue.isEmpty()){
            ListNode littleNode = queue.poll();
            node.next = littleNode;
            node = node.next;
            if(littleNode.next != null)
                queue.offer(littleNode.next);
        }
        return res.next;
    }
}

  

posted @ 2018-07-31 09:02  SkyeAngel  阅读(823)  评论(0编辑  收藏  举报