Luogu4194 / LOJ115 - 网络流 -
题目链接:https://www.luogu.com.cn/problem/P4194
题解:
LOJ115 是无源汇上下界可行流的板子题 Luogu4194 需要一定建模
无源汇上下界可行流,需要求一张图的流函数,使得满足流量守恒,而且每条边的流量在 \([L,R]\) 之间
那么该如何做呢?首先建一张新图,容量为 \(R-L\) 然后建一个超级源点 \(S\) 超级汇点 \(T\)
对于每条边 \((u,v)\) 设容量为 \(w\) ,那么 \(in[u]-w, out[v]+w\)
然后对于每个点,记 \(delta = in[i] - out[i]\),如果 \(delta > 0\),说明这个点能流进来的比较多,\(S \rightarrow i\) 连一条容量为 \(delta\) 的边,否则 \(i \rightarrow T\) 连一条 \(-delta\) 的边,记 \(P = \sum{delta} (如果\ delta > 0)\)
跑一遍最大流,看最大流是否为 \(P\),如果是说明能在新图中满足流量守恒,就是一个可行流,否则不是
最后对于每条边,\(L + e.flow\) 即为这条边的最终流量,显然 \(\in [L,R]\)
如果有源汇呢?在 原图 的汇点到源点连一条 \(INF\) 的边(注意别溢出了,注意不是超级源点超级汇点),同上
LOJ115 需要输出每一条边的方案,那就每条边记一个编号,其余同理,注意dinic中每条边的 \(flow\) 即为这条边的流量
// by SkyRainWind
// 求有源汇?连一条 T->S c = inf 的边(注意不是超级源汇!)
#include <bits/stdc++.h>
#define mpr make_pair
#define debug() cerr<<"Yoshino\n"
#define rep(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define pii pair<int,int>
using namespace std;
typedef long long LL;
const int inf = 1e9, INF = 0x3f3f3f3f, maxn = 10005;
int n,m;
struct ed{
LL from,to,cap,flow,rev;
int id, low, ad;
ed(){}
ed(LL from,LL to,LL cap,LL flow,LL rev,int id,int low,int ad):from(from),to(to),cap(cap),flow(flow),rev(rev),id(id),low(low),ad(ad){}
};
vector<ed>g[maxn];
struct netflow{
int cur[maxn];
int d[maxn], q[maxn], hd, tl;
int s, t; // 源 汇
netflow(){s=t=-1;}
void init(int s0,int t0){
s = s0, t = t0;
}
void add(int x,int y,LL v,int id,int low,int gg){
g[x].push_back(ed(x,y,v,0,g[y].size(),id,low,gg));
g[y].push_back(ed(y,x,0,0,g[x].size() - 1,id,low,0));
}
int bfs(){
memset(d,0, sizeof d);
hd = tl = 0;
q[tl ++] = s;
d[s] = 1;
while(hd != tl){
int now = q[hd ++];
for(int i = 0;i<g[now].size();i++){
ed &e = g[now][i];
if(!d[e.to] && e.cap > e.flow)d[e.to] = d[now] + 1, q[tl ++] = e.to;
}
}
return d[t];
}
LL dfs(int now,LL rem){ // rem 当前流量
if(now == t || !rem)return rem;
LL flow = 0;
for(int &i = cur[now]; i < g[now].size();i ++){
ed &e = g[now][i];
// 分层图 & 残量不为0
if(d[e.to] == d[now] + 1 && e.cap > e.flow){
LL f = dfs(e.to, min(rem, e.cap - e.flow));
rem -= f, flow += f, e.flow += f, g[e.to][e.rev].flow -= f;
}
if(!rem)break;
}
if(rem)d[now] = -1;
return flow;
}
LL dinic(){
assert(s!=-1);
LL flow = 0;
while(bfs()){
memset(cur, 0, sizeof cur);
flow += dfs(s, 1ll << 62);
}
return flow;
}
}nf;
int in[maxn], out[maxn], ans[maxn];
signed main(){
scanf("%d%d",&n,&m);
int s = 0, t = n+1;
for(int i=1;i<=m;i++){
int x, y, lw, up;
scanf("%d%d%d%d",&x,&y,&lw,&up);
nf.add(x, y, up - lw, i, lw, 1);
out[x] += lw;
in[y] += lw;
}
int lim = 0;
for(int i=1;i<=n;i++){
int cur = in[i] - out[i];
// id = 0,直接不会纳入最后计算
if(cur > 0)nf.add(s, i, cur, 0, 0, 0), lim += cur;
else nf.add(i, t, -cur, 0, 0, 0);
}
nf.init(s, t);
int res = nf.dinic();
// printf("%d\n",lim);
if(res < lim)puts("NO");
else{
puts("YES");
for(int i=1;i<=n;i++){
for(ed e : g[i]){
// printf("%d\n",e.flow);
if(e.ad)ans[e.id] = e.low + e.flow;
}
}
for(int i=1;i<=m;i++)printf("%d\n",ans[i]);
}
return 0;
}
Luogu4194
首先二分答案,因为A确定,问题就变成了B的每行之和减去A这行和的差的绝对值 < mid,列同理
记A第 \(i\) 行的和为 \(S\) ,那么B的第 \(i\) 行和应该为 \([S-mid, S+mid]\)
注意B中的一个元素会影响一行一列,因此考虑将行和列单独拆开,分别考虑
每行有限制,所以 \(S\rightarrow row_1..\) 的时候容量设为 \([rowsum_1[1]-mid,rowsum_1[1]+mid]\),其余同理,每列也有限制,同理,只不过是\(colsum\)
每个点的取值也有限制:\([L,R]\),因此\(row1\)向每个点连的边的容量就是这个,同理这个点向每列连的边也是。流过这个点的流量就是这个点的取值。因为流量守恒,所以这个点的值不变
跑有源汇的上下界可行流即可,INF不要开的太大防止越界(当然可以用ll)
// by SkyRainWind
#include <bits/stdc++.h>
#define mpr make_pair
#define debug() cerr<<"Yoshino\n"
#define rep(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define pii pair<int,int>
using namespace std;
typedef long long LL;
const int inf = 1e9, INF = 2e7, maxn = 1e5+5;
int n,m,a[205][205],srow[maxn],scol[maxn],rowid[maxn],colid[maxn],S,T;
int L,R;
int ind(int x,int y){return (x-1) * m + y;}
struct ed{
LL from,to,cap,flow,rev;
ed(){}
ed(LL from,LL to,LL cap,LL flow,LL rev):from(from),to(to),cap(cap),flow(flow),rev(rev){}
};
vector<ed>g[maxn];
struct netflow{
int cur[maxn];
int d[maxn], q[maxn], hd, tl;
int s, t; // 源 汇
netflow(){s=t=-1;}
void clear(){
s=t=-1;
for(int i=1;i<=n*m+n+m+10;i++)g[i].clear();
}
void init(int s0,int t0){
s = s0, t = t0;
}
void add(int x,int y,LL v){
g[x].push_back(ed(x,y,v,0,g[y].size()));
g[y].push_back(ed(y,x,0,0,g[x].size() - 1));
}
int bfs(){
memset(d,0, sizeof d);
hd = tl = 0;
q[tl ++] = s;
d[s] = 1;
while(hd != tl){
int now = q[hd ++];
for(int i = 0;i<g[now].size();i++){
ed &e = g[now][i];
if(!d[e.to] && e.cap > e.flow)d[e.to] = d[now] + 1, q[tl ++] = e.to;
}
}
return d[t];
}
LL dfs(int now,LL rem){ // rem 当前流量
if(now == t || !rem)return rem;
LL flow = 0;
for(int &i = cur[now]; i < g[now].size();i ++){
ed &e = g[now][i];
// 分层图 & 残量不为0
if(d[e.to] == d[now] + 1 && e.cap > e.flow){
LL f = dfs(e.to, min(rem, e.cap - e.flow));
rem -= f, flow += f, e.flow += f, g[e.to][e.rev].flow -= f;
}
if(!rem)break;
}
if(rem)d[now] = -1;
return flow;
}
LL dinic(){
assert(s!=-1);
LL flow = 0;
while(bfs()){
memset(cur, 0, sizeof cur);
flow += dfs(s, 1ll << 62);
}
return flow;
}
}nf;
int in[maxn], out[maxn], totn;
int check(int mid){
nf.clear();
memset(in, 0, sizeof in);memset(out, 0, sizeof out);
// S -> row[1..n]
for(int i=1;i<=n;i++){
nf.add(S, rowid[i], 2 * mid);
out[S] += (srow[i] - mid);
in[rowid[i]] += (srow[i] - mid);
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
nf.add(rowid[i], ind(i,j), R - L);
out[rowid[i]] += L;
in[ind(i, j)] += L;
}
}
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
nf.add(ind(j, i), colid[i], R - L);
out[ind(j, i)] += L;
in[colid[i]] += L;
}
}
for(int i=1;i<=m;i++){
nf.add(colid[i], T, 2 * mid);
out[colid[i]] += scol[i] - mid;
in[T] += scol[i] - mid;
}
nf.add(T, S, INF);
out[T] += INF; in[T] += INF;
int SS = totn+1, TT = totn + 2, lim = 0;
for(int i=1;i<=totn;i++){
int cur = in[i] - out[i];
if(cur > 0)nf.add(SS, i, cur),lim += cur;
else nf.add(i, TT, -cur);
}
nf.init(SS, TT);
int res = nf.dinic();
if(res < lim)return 0;
return 1;
}
signed main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)scanf("%d",&a[i][j]);
scanf("%d%d",&L,&R);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)srow[i] += a[i][j], scol[j] += a[i][j];
S = n*m+1, T = n*m+2;
for(int i=1;i<=n;i++)rowid[i] = n*m+i+2;
for(int i=1;i<=m;i++)colid[i] = n*m+n+2+i;
totn = n*m+n+2+m;
// printf("! %d\n",check(0));
int l=0, r = 2e5, ans;
while(l <= r){
int mid = l+r>>1;
if(check(mid))ans = mid, r = mid-1;
else l = mid+1;
}
printf("%d\n",ans);
return 0;
}