BZOJ 4085 丧心病狂的毒瘤题目 线段树+矩乘

思路:

一眼矩阵快速幂 再用线段树维护一下矩阵就完了...

我hhhhh    哎我还是too young,too simple 入了这个大坑

线段树维护9个值 

以上

 

如果A+1   转移矩阵是这个样子的

 

B+1

 

A-1 B-1 同理行么.....

 

写了一晚上+一上午  调完了

 

发现自己被卡常?

我了个大曹

我们发现一开始的矩阵最后一行不变

矩乘的时候特判一发  还是过不去

预处理2^k的矩阵

快速幂的时候省一倍常数  加个快读 

80432 ms

卡过去了!!

 

//By SiriusRen
#include <bits/stdc++.h>
using namespace std;
const int mod=1000000007,N=300005;
int n,q,a,b,A[N],F[N],d[N][4],lazy[N*8][2];
inline int read(){
    int x=0;char p=getchar();
    while(p<'0'||p>'9')p=getchar();
    while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();
    return x;
}
struct MATRIX{
    int a[3][3];
    void init(){memset(a,0,sizeof(a));}
}t[32],t0;
int pow(int x,int y){
    int res=1;
    while(y){
        if(y&1)res=1ll*res*x%mod;
        x=1ll*x*x%mod,y>>=1;
    }return res;
}
MATRIX operator*(MATRIX &a,MATRIX &b){
    static MATRIX c;c.init();
    for(int i=0;i<2;i++)
        for(int j=0;j<3;j++){
            for(int k=0;k<3;k++)
                c.a[i][j]=(c.a[i][j]+1ll*a.a[i][k]*b.a[k][j])%mod;
        }
    c.a[2][2]=1;
    return c;
}
MATRIX power(int k){
    static MATRIX res;res.init();
    res.a[0][0]=res.a[1][1]=res.a[2][2]=1;
    for(int i=1;k;k>>=1,i++)if(k&1)res=res*t[i];
    return res;
}
struct Matrix{
    int m[9][9];
    void init(){memset(m,0,sizeof(m));}
    void init1(){
        int B[9][9]={
            {0,0,1,0,0,0,0,0,0},
            {0,0,0,1,0,0,0,0,0},
            {a,0,1,0,0,0,b,0,0},
            {0,a,0,1,0,0,0,b,0},
            {0,0,0,0,0,1,0,0,0},
            {0,0,0,0,a,1,0,0,b},
            {0,0,0,0,0,0,1,0,0},
            {0,0,0,0,0,0,0,1,0},
            {0,0,0,0,0,0,0,0,1},
        };
        memcpy(m,B,sizeof(B)); 
    }
    void init2(){
        int B[9][9]={
            {0,1,0,0,0,0,0,0,0},
            {a,1,0,0,b,0,0,0,0},
            {0,0,0,1,0,0,0,0,0},
            {0,0,a,1,0,b,0,0,0},
            {0,0,0,0,1,0,0,0,0},
            {0,0,0,0,0,1,0,0,0},
            {0,0,0,0,0,0,0,1,0},
            {0,0,0,0,0,0,a,1,b},
            {0,0,0,0,0,0,0,0,1},
        };
        memcpy(m,B,sizeof(B)); 
    }
    void init3(){
        int x,y,z;
        if(a){
            int inv=pow(a,mod-2);
            x=inv,y=mod-inv,z=1ll*b*(mod-inv)%mod;
        }
        else x=0,y=1,z=mod-b;
        int B[9][9]={
            {y,0,x,0,0,0,z,0,0},
            {0,y,0,x,0,0,0,z,0},
            {1,0,0,0,0,0,0,0,0},
            {0,1,0,0,0,0,0,0,0},
            {0,0,0,0,y,x,0,0,z},
            {0,0,0,0,1,0,0,0,0},
            {0,0,0,0,0,0,1,0,0},
            {0,0,0,0,0,0,0,1,0},
            {0,0,0,0,0,0,0,0,1},
        };
        memcpy(m,B,sizeof(B));
    }
    void init4(){
        int x,y,z;
        if(a){
            int inv=pow(a,mod-2);
            x=inv,y=mod-inv,z=1ll*b*(mod-inv)%mod;
        }
        else x=0,y=1,z=mod-b;
        int B[9][9]={
            {y,x,0,0,z,0,0,0,0},
            {1,0,0,0,0,0,0,0,0},
            {0,0,y,x,0,z,0,0,0},
            {0,0,1,0,0,0,0,0,0},
            {0,0,0,0,1,0,0,0,0},
            {0,0,0,0,0,1,0,0,0},
            {0,0,0,0,0,0,y,x,z},
            {0,0,0,0,0,0,1,0,0},
            {0,0,0,0,0,0,0,0,1},
        };
        memcpy(m,B,sizeof(B));
    }
}cng[4][14],I;
Matrix operator*(Matrix &a,Matrix &b){
    Matrix c;c.init();
    for(int i=0;i<9;i++)
        for(int j=0;j<9;j++){
            for(int k=0;k<9;k++)
                c.m[i][j]=(c.m[i][j]+1ll*a.m[i][k]*b.m[k][j])%mod;
        }
    return c;
}
void bz(){
    cng[0][1].init1();cng[1][1].init2();
    cng[2][1].init3();cng[3][1].init4();
    for(int i=0;i<4;i++){
        cng[i][0]=I;
        for(int j=2;j<=13;j++)
            cng[i][j]=cng[i][j-1]*cng[i][j-1];
    }
}
struct Line{
    int m[9];
    void set(int aa_1,int aa,int bb_1,int bb){
        m[0]=1ll*aa_1*bb_1%mod,m[1]=1ll*aa_1*bb%mod,m[2]=1ll*aa*bb_1%mod,
        m[3]=1ll*aa*bb%mod,m[4]=aa_1,m[5]=aa,m[6]=bb_1,m[7]=bb,m[8]=1;
    }
}tr[1<<20],ans;
Line operator+(Line &a,Line &b){
    Line c;
    for(int i=0;i<9;i++)c.m[i]=(a.m[i]+b.m[i])%mod;
    return c;
}
Line operator*(Matrix &a,Line &b){
    Line c;memset(c.m,0,sizeof(c.m)); 
    for(int i=0;i<9;i++)
        for(int j=0;j<9;j++)
            c.m[i]=(c.m[i]+1ll*a.m[i][j]*b.m[j])%mod;
    return c;
}
void change(Line &f,Matrix r[],int k){
    for(int i=1;k;k>>=1,i++)if(k&1)f=r[i]*f;
}
void calc(int pos,int a0,int a1){
    if(a0){
        if(a0<0)change(tr[pos],cng[2],-a0);
        else change(tr[pos],cng[0],a0);
    }
    if(a1){
        if(a1<0)change(tr[pos],cng[3],-a1);
        else change(tr[pos],cng[1],a1);
    }
}
void push_down(int pos,int l,int r){
    calc(pos,lazy[pos][0],lazy[pos][1]);
    if(l<r){
        int lson=pos<<1,rson=pos<<1|1;
        lazy[lson][0]+=lazy[pos][0],lazy[lson][1]+=lazy[pos][1];
        lazy[rson][0]+=lazy[pos][0],lazy[rson][1]+=lazy[pos][1];
    }
    lazy[pos][0]=lazy[pos][1]=0; 
}
void push_up(int pos,int l,int r){
    int mid=(l+r)>>1,lson=pos<<1,rson=pos<<1|1;
    push_down(lson,l,mid),push_down(rson,mid+1,r);
    tr[pos]=tr[lson]+tr[rson];
}
void build(int l,int r,int pos){
    if(l==r){
        tr[pos].set(d[l-1][2],d[l-1][3],d[r+1][0],d[r+1][1]);
        return;
    }
    int mid=(l+r)>>1,lson=pos<<1,rson=pos<<1|1;
    build(l,mid,lson),build(mid+1,r,rson);
    push_up(pos,l,r);
}
void insert(int l,int r,int pos,int L,int R,int op){
    if(L>R)return;
    if(l>=L&&r<=R){
        if(!op)lazy[pos][0]++;
        else if(op==1)lazy[pos][1]++;
        else if(op==2)lazy[pos][0]--;
        else if(op==3)lazy[pos][1]--;
        return;
    }push_down(pos,l,r); 
    int mid=(l+r)>>1,lson=pos<<1,rson=pos<<1|1;
    if(mid<L)insert(mid+1,r,rson,L,R,op);
    else if(mid>=R)insert(l,mid,lson,L,R,op);
    else insert(l,mid,lson,L,R,op),insert(mid+1,r,rson,L,R,op);
    push_up(pos,l,r);
}
void query(int l,int r,int pos,int L,int R){
    if(L>R)return;
    push_down(pos,l,r);
    if(l>=L&&r<=R){ans=ans+tr[pos];return;}
    int mid=(l+r)>>1,lson=pos<<1,rson=pos<<1|1;
    if(mid<L)query(mid+1,r,rson,L,R);
    else if(mid>=R)query(l,mid,lson,L,R);
    else query(l,mid,lson,L,R),query(mid+1,r,rson,L,R);
}
signed main(){
    scanf("%d%d%d%d",&n,&q,&a,&b);
    for(int i=0;i<9;i++)I.m[i][i]=1;
    t[1].a[0][0]=t[1].a[1][0]=t[1].a[2][2]=1,t[1].a[0][1]=a,t[1].a[0][2]=b;
    t0.a[1][0]=t0.a[2][0]=1,t0.a[0][0]=2;
    for(int i=2;i<=31;i++)t[i]=t[i-1]*t[i-1];
    for(int i=1;i<=n;i++){
        A[i]=read();
        if(A[i]!=1){
            MATRIX temp=power(A[i]-2);temp=temp*t0;
            d[i][0]=temp.a[1][0],d[i][1]=temp.a[0][0];
        }
        else d[i][0]=1,d[i][1]=2;
        d[i][2]=(d[i][1]+1ll*d[i][0]*a+b)%mod;
        d[i][3]=(d[i][2]+1ll*d[i][1]*a+b)%mod;
    }bz(),build(2,n-1,1);
    while(q--){
        char op[10];int l,r;
        scanf("%s%d%d",op,&l,&r);
        if(op[0]=='q'){
            memset(ans.m,0,sizeof(ans.m));
            query(2,n-1,1,l+1,r-1);
            printf("%d\n",ans.m[0]);
        }
        else if(op[0]=='p')insert(2,n-1,1,l+1,min(n-1,r+1),0),insert(2,n-1,1,max(l-1,2),r-1,1);
        else insert(2,n-1,1,l+1,min(n-1,r+1),2),insert(2,n-1,1,max(l-1,2),r-1,3);
    }
}

 

posted @ 2017-05-31 21:27  SiriusRen  阅读(660)  评论(0编辑  收藏  举报