BZOJ 1061费用流
思路:
我们可以列出几个不等式
用y0带进去变成等式
下-上 可以消好多东西
我们发现 等式左边的加起来=0
可以把每个方程看成一个点
正->负 连边
跑费用流即可
//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define int long long
#define mem(x,y) memset(x,y,sizeof(x))
const int N=24005,M=1005,inf=0x3f3f3f3f;
int edge[N],cost[N],v[N],w[N],first[M],next[N],tot,ans;
int n,m,xx,yy,zz,least[M],with[M],vis[N],d[M],minn[M];
void Add(int x,int y,int C,int E){edge[tot]=E,cost[tot]=C,v[tot]=y,next[tot]=first[x],first[x]=tot++;}
void add(int x,int y,int C,int E){Add(x,y,C,E),Add(y,x,-C,0);}
bool tell(){
mem(with,0),mem(vis,0),mem(d,0x3f),mem(minn,0x3f);
queue<int>q;q.push(0);d[0]=0;
while(!q.empty()){
int t=q.front();q.pop();vis[t]=0;
for(int i=first[t];~i;i=next[i]){
if(d[v[i]]>d[t]+cost[i]&&edge[i]){
d[v[i]]=d[t]+cost[i],minn[v[i]]=min(minn[t],edge[i]),with[v[i]]=i;
if(!vis[v[i]])vis[v[i]]=1,q.push(v[i]);
}
}
}return d[n+1]<inf;
}
int zeng(){
for(int i=n+1;i;i=v[with[i]^1])
edge[with[i]]-=minn[n+1],edge[with[i]^1]+=minn[n+1];
return minn[n+1]*d[n+1];
}
signed main(){
mem(first,-1);
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;i++){
scanf("%lld",&least[i]);
if(least[i]-least[i-1]>0)add(0,i,0,least[i]-least[i-1]);
else add(i,n+1,0,least[i-1]-least[i]);
if(i!=n)add(i+1,i,0,inf);
}
for(int i=1;i<=m;i++)
scanf("%lld%lld%lld",&xx,&yy,&zz),add(xx,yy+1,zz,inf);
while(tell())ans+=zeng();
printf("%lld\n",ans);
}