Java并发之线程池
为什么需要线程池
操作系统中线程的实现有三种,一种是用户级线程,一种是内核支持线程,还有一种是前两种的组合方式。用户级线程是在用户空间实现的,而内核级线程是在OS内核空间实现的。JVM对于线程并没有明确的定义是用户线程还是内核线程,但Java常用的JVM HotSpot,它都是使用1:1线程模型即内核线程,线程的调度完全交给了操作系统内核;所以在HotSpot上创建线程需要操作系统从用户态切换到内核态,这个开销是巨大的。而Java的线程在使用完后就会被回收,而需要时又会被创建,所以通过将空闲线程管理起来成为线程池,当需要线程运行任务的时候就从线程池中拿线程,避免了线程的创建过程,提升效率。
线程池构造函数
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.acc = System.getSecurityManager() == null ?
null :
AccessController.getContext();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
参数含义:
参数 | 含义 |
---|---|
corePoolSize | 当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的线程能够执行新任务也会创建线程,等到需要执行的任务数大于corePoolSize时就不再创建。如果调用了线程池的prestartAllCoreThreads()方法,线程池会提前创建并启动所有corePoolSize线程 |
maximumPoolSize | 线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务 |
keepAliveTime | 线程活动保持时间,线程池的工作线程空闲后,保持存活的时间 |
unit | 线程活动保持时间的单位 |
workQueue | 任务队列,用于保存等待执行的任务的阻塞队列 |
threadFactory | 创建线程时使用的线程创建工厂 |
handler | 拒绝策略,当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。 |
线程池源码分析
向线程池提交任务有两种方法,分别是使用execute()和submit()方法提交:
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
// 获取线程池状态
int c = ctl.get();
// 判断线程池运行的线程数是否小于核心线程数
if (workerCountOf(c) < corePoolSize) {
// 小于核心线程数,将任务包装成worker
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
// 如线程数大于等于核心线程数或线程创建失败,则将当前任务放到阻塞队列中
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
// 如果线程池处于非运行状态,移除刚加入到阻塞队列中的任务,并且执行拒绝策略
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 核心线程数已满且阻塞队列已满,创建非核心线程Worker
else if (!addWorker(command, false))
// 创建非核心线程Worker失败,执行拒绝策略
reject(command);
}
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
public <T> Future<T> submit(Runnable task, T result) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task, result);
execute(ftask);
return ftask;
}
从上面源码可以看到,提交给线程池的任务都会被线程池通过addWorker()方法包装成一个Worker内部类,Worker内部类及addWorker()方法源码如下:
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
private static final long serialVersionUID = 6138294804551838833L;
final Thread thread;
Runnable firstTask;
volatile long completedTasks;
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
public void run() {
runWorker(this);
}
protected boolean isHeldExclusively() {
return getState() != 0;
}
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
// 获取线程池运行状态
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
// rs >= SHUTDOWN,线程池状态为STOP, TIDYING, 或TERMINATED,不再接收新任务
// rs = SHUTDOWN 并且firstTask为空,并且workQueue非空,是允许创建worker,表示继续处理队列中的任务
return false;
for (;;) {
int wc = workerCountOf(c);
// 校验传入的线程数是否超过了容量大小, 或者是否超过了corePoolSize或maximumPoolSize
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// 线程数没有超,那么就用CAS将线程池的个数加1
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
// 说明有其他的线程抢先更新了状态,继续下一轮的循环,跳到外层循环
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
// 创建一个worker
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
int rs = runStateOf(ctl.get());
// 判断线程池状态和线程状态,并加入workers队列
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
addWorker先对线程池状态及线程池大小做校验,随后将任务包装成一个Worker,Worker是一个实现了Runnable的内部类,run()方法直接调用到ThreadPoolExecutor的runWorker方法
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
// 拿到worker中实际需要执行的任务
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// 如果任务为空,则从workQueue里面获取task,线程池的阻塞队列的作用就体现在这里了
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
// 执行前的扩展方法
beforeExecute(wt, task);
Throwable thrown = null;
try {
// 任务执行
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
// 执行后的扩展方法
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
线程池状态管理
线程池状态管理通过一个32位的整数来存放线程池的状态和当前池中的线程数,其中高3位用于存放线程池状态,低29位表示线程数,源码如下
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// COUNT_BITS 设置为 29(32-3),意味着前三位用于存放线程状态,后29位用于存放线程数
private static final int COUNT_BITS = Integer.SIZE - 3;
// 最大线程数是 2^29-1=536870911
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
// 线程池状态
// 111 00000000000000000000000000000,接受新的任务,处理等待队列中的任务
private static final int RUNNING = -1 << COUNT_BITS;
// 000 00000000000000000000000000000,不接受新的任务提交,但是会继续处理等待队列中的任务
private static final int SHUTDOWN = 0 << COUNT_BITS;
// 001 00000000000000000000000000000,不接受新的任务提交,不再处理等待队列中的任务,中断正在执行任务的线程
private static final int STOP = 1 << COUNT_BITS;
// 010 00000000000000000000000000000,所有的任务都销毁了,workCount为0,线程池的状态在转换为 TIDYING 状态时,会执行钩子方法 terminated()
private static final int TIDYING = 2 << COUNT_BITS;
// 011 00000000000000000000000000000,terminated() 方法结束后,线程池的状态就会变成这个状态
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
// 线程池状态获取方法,将CAPACITY取非后和c进行取与运算,可以得到高3位的值,即线程池的状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
// 线程池线程个数获取方法,将c和CAPACITY取与运算,可以得到低29位的值,即线程池的个数
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }