HDU 5833 Zhu and 772002

HDU 5833 Zhu and 772002

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

 

Description

题目描述

Zhu and 772002 are both good at math. One day, Zhu wants to test the ability of 772002, so he asks 772002 to solve a math problem.

 

But 772002 has a appointment with his girl friend. So 772002 gives this problem to you.

 

There are n numbers a1,a2,...,an. The value of the prime factors of each number does not exceed 2000, you can choose at least one number and multiply them, then you can get a number b .

 

How many different ways of choices can make b is a perfect square number. The answer maybe too large, so you should output the answer modulo by 1000000007.

Zhu772002都擅长数学。 某天,Zhu想试试772002的能耐,就给772002出了道数学题。

 

但772002与女票有约在先,果断甩锅予你。

 

n个数a1,a2,...,an每个数的质因数不超过2000,你可以选择至少一个数并将所选的数相乘,得到b

 

有多少种选择方式可以使b为完全平方数。结果可能非常大,输出时模1000000007

 

Input

输入

First line is a positive integer T, represents there are T test cases.

 

For each test case:

 

First line includes a number n(1≤n≤300)next line there are n numbers a1,a2,...,an,(1≤ai≤1018).

第一行是一个整数T(T100),表示有T个测试用例的数量。

 

对于每个测试用例:

 

第一行有一个整数n(1≤n≤300),下一行有n个数a1,a2,...,an,(1≤ai≤1018)

 

Output

输出

For the i-th test case, first output Case #i: in a single line.

 

Then output the answer of i-th test case modulo by 1000000007.

对于第i个测试用例,先输出一行Case #i:。

 

 然后输出第i个测试用例的答案模1000000007后的结果。

 

Sample Input - 输入样例

Sample Output - 输出样例

2
3
3 3 4
3
2 2 2

Case #1:
3
Case #2:
3

 

【题解】

  分解质因数 + 高斯消元

  对于容易一个输入的数进行分解质因数,保存到矩阵的各个行中。

  每个数都能看作若干个质数相乘,若每个质数的指数均为偶数,这个数即是完全平方数。因此用10表示奇偶,每个数的合并/化简就能用异或来操作。

  然后用异或高斯消元,得到矩阵的秩r,接着得到(n - r)个可自由组合的完全平方数。最后组合数求和,去掉什么都不选的情况,结果为2- 1

  (啪!迷之巴掌)

  好吧,其实我一开始根本不知道高斯消元是什么鬼。刚刚开始的理解就是分解质因数(形成多项式),压入矩阵方便求基底(当成向量来看),然后默默地发现高斯消元就是矩阵化简吧……

 

【代码 C++

 1 #include <cstdio>
 2 #include <cstring>
 3 #define pMX 2005
 4 #define  mod 1000000007
 5 int prim[304] = { 2 }, iP, mtx[305][304];
 6 void getPrim() {
 7     int i, j;
 8     bool mark[pMX];
 9     memset(mark, 0, sizeof(mark));
10     for (i = 3; i < pMX; i += 2) {
11         if (mark[i]) continue;
12         prim[++iP] = i;
13         for (j = i << 1; j < pMX; j += i) mark[j] = 1;
14     }
15 }
16 void tPrim(int y, __int64 a) {
17     int i, j;
18     for (i = 0; i <= iP && a >= prim[i]; ++i) {
19         if (a / prim[i] * prim[i] == a) {
20             for (j = 0; a / prim[i] * prim[i] == a; a /= prim[i]) ++j;
21             mtx[y][i] = j & 1;
22         }
23     }
24 }
25 int mTS(int n){
26     bool inUS[305]; memset(inUS, 0, sizeof(inUS));
27     int size = 0, i, j, k, ik;
28     for (j = 0; j <= iP; ++j){
29         for (i = 0; i < n; ++i){
30             if (inUS[i] == 0 && mtx[i][j] == 1) break;
31         }
32         if (i == n) continue;
33         inUS[i] = 1; ++size;
34         for (k = 0; k < n; ++k){
35             if (inUS[k] || mtx[k][j] == 0) continue;
36             for (ik = j; ik <= iP; ++ik) mtx[k][ik] ^= mtx[i][ik];
37         }
38     }
39     return n - size;
40 }
41 __int64 qMod(__int64 a, int n){
42     __int64 opt = 1;
43     while (n){
44         if (n & 1) opt = (opt*a) % mod;
45         n >>= 1;
46         a = (a*a) % mod;
47     }
48     return opt;
49 }
50 int main() {
51     getPrim();
52     int t, iT, i, n;
53     __int64 ai;
54     scanf("%d", &t);
55     for (iT = 1; iT <= t; ++iT) {
56         printf("Case #%d:\n", iT);
57         memset(mtx, 0, sizeof(mtx));
58         scanf("%d", &n);
59         for (i = 0; i < n; ++i){
60             scanf("%I64d", &ai);
61             tPrim(i, ai);
62         }
63         printf("%I64d\n", qMod(2, mTS(n)) - 1);
64     }
65     return 0;
66 }

 

posted @ 2016-09-12 20:56  Simon_X  阅读(197)  评论(0编辑  收藏  举报