HDU 5833 Zhu and 772002
HDU 5833 Zhu and 772002
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Description |
题目描述 |
Zhu and 772002 are both good at math. One day, Zhu wants to test the ability of 772002, so he asks 772002 to solve a math problem.
But 772002 has a appointment with his girl friend. So 772002 gives this problem to you.
There are n numbers a1,a2,...,an. The value of the prime factors of each number does not exceed 2000, you can choose at least one number and multiply them, then you can get a number b .
How many different ways of choices can make b is a perfect square number. The answer maybe too large, so you should output the answer modulo by 1000000007. |
Zhu和772002都擅长数学。 某天,Zhu想试试772002的能耐,就给772002出了道数学题。
但772002与女票有约在先,果断甩锅予你。
有n个数a1,a2,...,an。每个数的质因数不超过2000,你可以选择至少一个数并将所选的数相乘,得到b。
有多少种选择方式可以使b为完全平方数。结果可能非常大,输出时模1000000007。 |
Input |
输入 |
First line is a positive integer T, represents there are T test cases.
For each test case:
First line includes a number n(1≤n≤300),next line there are n numbers a1,a2,...,an,(1≤ai≤1018). |
第一行是一个整数T(T≤100),表示有T个测试用例的数量。
对于每个测试用例:
第一行有一个整数n(1≤n≤300),下一行有n个数a1,a2,...,an,(1≤ai≤1018)。 |
Output |
输出 |
For the i-th test case, first output Case #i: in a single line.
Then output the answer of i-th test case modulo by 1000000007. |
对于第i个测试用例,先输出一行Case #i:。
然后输出第i个测试用例的答案模1000000007后的结果。 |
Sample Input - 输入样例 |
Sample Output - 输出样例 |
2 |
Case #1: |
【题解】
分解质因数 + 高斯消元
对于容易一个输入的数进行分解质因数,保存到矩阵的各个行中。
每个数都能看作若干个质数相乘,若每个质数的指数均为偶数,这个数即是完全平方数。因此用10表示奇偶,每个数的合并/化简就能用异或来操作。
然后用异或高斯消元,得到矩阵的秩r,接着得到(n - r)个可自由组合的完全平方数。最后组合数求和,去掉什么都不选的情况,结果为2n - 1。
(啪!迷之巴掌)
好吧,其实我一开始根本不知道高斯消元是什么鬼。刚刚开始的理解就是分解质因数(形成多项式),压入矩阵方便求基底(当成向量来看),然后默默地发现高斯消元就是矩阵化简吧……
【代码 C++】
1 #include <cstdio> 2 #include <cstring> 3 #define pMX 2005 4 #define mod 1000000007 5 int prim[304] = { 2 }, iP, mtx[305][304]; 6 void getPrim() { 7 int i, j; 8 bool mark[pMX]; 9 memset(mark, 0, sizeof(mark)); 10 for (i = 3; i < pMX; i += 2) { 11 if (mark[i]) continue; 12 prim[++iP] = i; 13 for (j = i << 1; j < pMX; j += i) mark[j] = 1; 14 } 15 } 16 void tPrim(int y, __int64 a) { 17 int i, j; 18 for (i = 0; i <= iP && a >= prim[i]; ++i) { 19 if (a / prim[i] * prim[i] == a) { 20 for (j = 0; a / prim[i] * prim[i] == a; a /= prim[i]) ++j; 21 mtx[y][i] = j & 1; 22 } 23 } 24 } 25 int mTS(int n){ 26 bool inUS[305]; memset(inUS, 0, sizeof(inUS)); 27 int size = 0, i, j, k, ik; 28 for (j = 0; j <= iP; ++j){ 29 for (i = 0; i < n; ++i){ 30 if (inUS[i] == 0 && mtx[i][j] == 1) break; 31 } 32 if (i == n) continue; 33 inUS[i] = 1; ++size; 34 for (k = 0; k < n; ++k){ 35 if (inUS[k] || mtx[k][j] == 0) continue; 36 for (ik = j; ik <= iP; ++ik) mtx[k][ik] ^= mtx[i][ik]; 37 } 38 } 39 return n - size; 40 } 41 __int64 qMod(__int64 a, int n){ 42 __int64 opt = 1; 43 while (n){ 44 if (n & 1) opt = (opt*a) % mod; 45 n >>= 1; 46 a = (a*a) % mod; 47 } 48 return opt; 49 } 50 int main() { 51 getPrim(); 52 int t, iT, i, n; 53 __int64 ai; 54 scanf("%d", &t); 55 for (iT = 1; iT <= t; ++iT) { 56 printf("Case #%d:\n", iT); 57 memset(mtx, 0, sizeof(mtx)); 58 scanf("%d", &n); 59 for (i = 0; i < n; ++i){ 60 scanf("%I64d", &ai); 61 tPrim(i, ai); 62 } 63 printf("%I64d\n", qMod(2, mTS(n)) - 1); 64 } 65 return 0; 66 }