HDU 1711 Number Sequence(数列)
HDU 1711 Number Sequence(数列)
Time Limit: 10000/5000 MS (Java/Others)
Memory Limit: 32768/32768 K (Java/Others)
【Description】 |
【题目描述】 |
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one. |
给定两串数组 : a[1], a[2], ...... , a[N], 和 b[1], b[2], ...... , b[M] (1 <= N <= 1000000, 1 <= M <= 10000)。你的任务是找到一个数字K使得a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]。如果存在多个K, 输出最小的那个。 |
【Input】 |
【输入】 |
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000]. |
输入的第一行是一个数字T 表示测试用例的数量。每个测试用例有三行。 第一行神两个数N和M (1 <= M <= 10000, 1 <= N <= 1000000)。 第二行有N个整数a[1], a[2], ...... , a[N]。 第三行有M个整数b[1], b[2], ...... , b[M]。 所有整数的范围都在 [-1000000, 1000000]。 |
【Output】 |
【输出】 |
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead. |
对于每个测试用例,输出一行上述K值。如果K不存在,则输出-1. |
【Sample Input - 输入样例】 |
【Sample Output - 输出样例】 |
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1 |
6 -1 |
【题解】
KMP可解,初次匹配成功的时候结束即可。
【代码 C++】
1 #include <cstdio> 2 int a[1000005], b[10005]; 3 int aLen, bLen, next[10005] = { -1 }; 4 void setNext_b(){ 5 int i = 0, j = -1; 6 while (i < bLen){ 7 if (j == -1 || b[i] == b[j]) next[++i] = ++j; 8 else j = next[j]; 9 } 10 } 11 int fid(){ 12 int i = 0, j = 0; 13 while (i < aLen){ 14 if (j == -1 || a[i] == b[j]) ++i, ++j; 15 else j = next[j]; 16 if (j == bLen) return i - j + 1; 17 } 18 return -1; 19 } 20 int main(){ 21 int i, t; 22 scanf("%d", &t); 23 while (t--){ 24 scanf("%d%d", &aLen, &bLen); 25 for (i = 0; i < aLen; ++i) scanf("%d", &a[i]); 26 for (i = 0; i < bLen; ++i) scanf("%d", &b[i]); 27 setNext_b(); 28 printf("%d\n", fid()); 29 } 30 return 0; 31 }