POJ 1142 Smith Numbers(史密斯数)

Description

题目描述

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University, noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

 

4937775= 3*5*5*65837

 

The sum of all digits of the telephone number is 4+9+3+7+7+7+5= 42,and the sum of the digits of its prime factors is equally 3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this kind of numbers after his brother-in-law: Smith numbers.

 

As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number, so he excluded them from the definition.

 

Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036.However, Wilansky was not able to find a Smith number that was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers that are larger than 4937775!

阿尔伯特·威兰斯基是一位理海大学的数学家,在1982年浏览他自己的电话薄时,注意到他的表兄弟(Harold Smith)H. Smith的电话号码有有如下特点:各位上的数字相加等于分解质因数后各位上的数字相加。懂否?史密斯的电话号码是493-7775。这个数字可被分解质因数致如下形式:

 

4937775= 3*5*5*65837

 

这个电话号码各位数字的和是4+9+3+7+7+7+5= 42,并且与分解质因数后各位数字的和相等3+5+5+6+5+8+3+7=42。威兰斯基感觉很神奇就以他的表兄弟命名:史密斯数。

 

不过这个性质对每个质数都成立,因此威兰斯基后来把质数(分解不能)从史密斯数的定义中剔除了。

 

威兰斯基在the Two Year College Mathematics Journal发表了关于史密斯数的论文并且列出了一整套史密斯数:举个栗子,9985是史密斯数,6036也是。但是威兰斯基没能找到比他表兄弟电话号码4937775更大的史密斯数,你可以当条红领巾!

 

Input

输入

The input file consists of a sequence of positive integers, one integer per line. Each integer will have at most 8 digits. The input is terminated by a line containing the number 0.

输入文件由一列正整数组成,每行一个整数。每个整数最多8位。数字0表示输入结束。

 

Output

输出

For every number n > 0 in the input, you are to compute the smallest Smith number which is larger than n, and print it on a line by itself. You can assume that such a number exists.

对于每个n>0的输入,你要算出大于n的最小史密斯数,输出一行。你可以认为结果是存在的。

 

Sample Input - 输入样例

Sample Output - 输出样例

4937774

0

4937775

 

【题解】

  首先,这道题是水题,不然就会和某个人一样觉得要用Pollard's rho算法……

  注意几点就可以了:

  ①可以暴力。②素数不是史密斯数。③从n+1开始找。

  ④题目描述和输入输出分开看,并不是要你找4937775后的史密斯数。

【代码 C++】

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<cmath>
 4 int prime[1230];
 5 void rdy(){
 6     bool temp[10005];
 7     memset(temp, 0, sizeof(temp));
 8     prime[0] = 2;
 9     int i = 3, j, pi = 0;
10     for (i = 3; i < 10005; i += 2){
11         if (temp[i]) continue;
12         else{
13             for (j = i << 1; j < 10005; j += i) temp[j] = 1;
14             prime[++pi] = i;
15         }
16     }
17     prime[1229] = 9974;
18 }
19 int digitSum(int now){
20     int sum = 0;
21     while (now) sum += now % 10, now /= 10;
22     return sum;
23 }
24 int find(int now){
25     int i = 0, ed = sqrtf(now) + 0.5;
26     if (ed > 9973) ed = 9973;
27     for (; prime[i] <= ed; ++i){
28         if (now%prime[i] == 0) return prime[i];
29     }
30     return 0;
31 }
32 int change(int now){
33     int sum = 0, temp, stp = 0;
34     while (now > 1){
35         temp = find(now);
36         if (temp) sum += digitSum(temp), now /= temp, ++stp;
37         else sum += digitSum(now), now = 0;
38     }
39     if (stp) return sum;
40     return 0;
41 }
42 int main(){
43     rdy();
44     int n;
45     while (scanf("%d", &n)){
46         if (n++){
47             while (digitSum(n) != change(n)) ++n;
48             printf("%d\n", n);
49         }
50         else break;
51     }
52     return 0;
53 }

POJ 1142

posted @ 2016-03-01 12:32  Simon_X  阅读(1232)  评论(0编辑  收藏  举报