Bzoj2154 Crash的数字表格

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 3325  Solved: 1247

Description

今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple)。对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数。例如,LCM(6, 8) = 24。回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格。每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j)。一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这个表格,Crash想到了很多可以思考的问题。不过他最想解决的问题却是一个十分简单的问题:这个表格中所有数的和是多少。当N和M很大时,Crash就束手无策了,因此他找到了聪明的你用程序帮他解决这个问题。由于最终结果可能会很大,Crash只想知道表格里所有数的和mod 20101009的值。

Input

输入的第一行包含两个正整数,分别表示N和M。

Output

输出一个正整数,表示表格中所有数的和mod 20101009的值。

Sample Input

4 5

Sample Output

122
【数据规模和约定】
100%的数据满足N, M ≤ 10^7。

HINT

 

Source

 

数学问题 莫比乌斯反演

 

题目要求的是这个:    很明显也就是  

 

如果我们要求  ,可以这么搞:

  i和j都带进等差数列公式,设上式为函数sum[N,M],则 $sum[N,M]=(N(N+1)/2)*(M(M+1)/2)$

如果要求gcd(i,j)的和,也有方便的方法:http://www.cnblogs.com/SilverNebula/p/6582843.html

当然不可以分别算上面和下面,然后两式相除,但是↑这里的分块求值方法给了我们一定启发:对于gcd(i,j)相等的一段i和j,上面除以下面满足除法分配律,是可行的。

枚举因数d=gcd(i,j),则可以化成  ,这个是可以求的

枚举累加过程会有重复算的部分,这时候就需要莫比乌斯函数来解决问题了

 

为了表示方便,令a=N/d,b=M/d

我们可以搞出

这个东西累加一下就是我们要的结果:

 

加上LL以后就突然各种挂,调了好久

 1 /*by SilverN*/
 2 #include<algorithm>
 3 #include<iostream>
 4 #include<cstring>
 5 #include<cstdio>
 6 #include<cmath>
 7 #include<vector>
 8 #define LL long long
 9 using namespace std;
10 const LL inv2=10050505;
11 const LL mod=20101009;
12 const int mxn=10000010;
13 int pri[mxn],cnt=0;
14 int mu[mxn];
15 LL smm[mxn];
16 bool vis[mxn];
17 void init(){
18     mu[1]=1;
19     for(int i=2;i<mxn;i++){
20         if(!vis[i]){
21             pri[++cnt]=i;
22             mu[i]=-1;
23         }
24         for(int j=1;j<=cnt && (LL)pri[j]*i<mxn;j++){
25             vis[i*pri[j]]=1;
26             if(i%pri[j]==0){mu[i*pri[j]]=0;break;}
27             mu[i*pri[j]]=-mu[i];
28         }
29     }
30     for(int i=1;i<mxn;i++)smm[i]=(smm[i-1]+(LL)i*mu[i]*i)%mod;
31     return;
32 }
33 int SUM(int x,int y){
34     return ((LL)x*(x+1)%mod*inv2%mod)*((LL)y*(y+1)%mod*inv2%mod)%mod;
35 }
36 inline int s1(int x){return (x*(x+1)%mod*inv2%mod);} 
37 LL calc(int a,int b){
38     LL res=0;int pos;
39     if(a>b)swap(a,b);
40     for(int i=1;i<=a;i=pos+1){
41         int x=a/i,y=b/i;
42         pos=min(a/x,b/y);
43         res+=(smm[pos]-smm[i-1])*SUM(x,y);
44         res%=mod;
45     }
46     return res;
47 }
48 int solve(int a,int b){
49     LL res=0;int pos;
50     if(a>b)swap(a,b);
51     for(int i=1;i<=a;i=pos+1){
52         int x=a/i,y=b/i;
53         pos=min(a/x,b/y);
54         (res+=(s1(pos)-s1(i-1))*calc(x,y))%=mod;
55     }
56     return res;
57 }
58 LL n,m;
59 int main(){
60     int i,j;
61     init();
62     cin>>n>>m;
63     printf("%d\n",solve(n,m));
64     return 0;
65 }

 

posted @ 2017-03-21 12:01  SilverNebula  阅读(211)  评论(0编辑  收藏  举报
AmazingCounters.com