UVa12169 Disgruntled Judge
x2 = (a * x1 + b) % 10001;
x3 = (a * x2 + b) % 10001;
∴x3 = (a * (a * x1 + b) % 10001 + b ) % 10001;
∴(a + 1) * b + 10001 * (-k) = x3 - a * a * x1
由于a的范围是1~10000,所以可以枚举a,解出b,暴力判断这组a和b能否适用于所有的x
1 /*by SilverN*/ 2 #include<iostream> 3 #include<algorithm> 4 #include<cstring> 5 #include<cstdio> 6 #include<cmath> 7 #define LL long long 8 using namespace std; 9 const int mod=10001; 10 const int mxn=50000; 11 LL num[mxn]; 12 LL x[mxn]; 13 LL k,b; 14 int n; 15 LL exgcd(LL a,LL b,LL &x,LL &y){ 16 if(!b){ 17 x=1;y=0; 18 return a; 19 } 20 LL tmp=exgcd(b,a%b,x,y); 21 LL t=x;x=y;y=t-a/b*y; 22 return tmp; 23 } 24 int main(){ 25 scanf("%d",&n); 26 int i,j; 27 for(i=1;i<=n;i++){ 28 scanf("%lld",&num[i]); 29 } 30 for(int a=0;a<mod;a++){ 31 LL tmp=num[2]-a*a*num[1]; 32 LL gcd=exgcd(a+1,mod,k,b); 33 if(tmp%gcd)continue; 34 // printf("test:%lld\n",tmp); 35 b=k*tmp/gcd%mod; 36 bool ok=1; 37 x[1]=(num[1]*a+b)%mod; 38 for(i=2;i<=n;i++){ 39 if(num[i]!=(x[i-1]*a+b)%mod){ 40 ok=0; 41 break; 42 } 43 x[i]=(num[i]*a+b)%mod; 44 } 45 if(!ok)continue; 46 //if ok 47 for(i=1;i<=n;i++)printf("%lld\n",x[i]); 48 break; 49 } 50 return 0; 51 }
本文为博主原创文章,转载请注明出处。