HDU 2476 String painter

String painter

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3639    Accepted Submission(s): 1697


Problem Description

There are two strings A and B with equal length. Both strings are made up of lower case letters. Now you have a powerful string painter. With the help of the painter, you can change a segment of characters of a string to any other character you want. That is, after using the painter, the segment is made up of only one kind of character. Now your task is to change A to B using string painter. What’s the minimum number of operations?
 

 

Input

Input contains multiple cases. Each case consists of two lines:
The first line contains string A.
The second line contains string B.
The length of both strings will not be greater than 100.
 

 

Output

A single line contains one integer representing the answer.
 

 

Sample Input

zzzzzfzzzzz
abcdefedcba
abababababab
cdcdcdcdcdcd

 

Sample Output

6
7

 

Source

 

 

Recommend

lcy
 
 
题目大意:给定两个等长度的字符串,有一种刷新字符串的方法,它能够将一段字符串刷成同一个字符(任意字符)。现在要你使用这种方法,使得第一个字符串被刷成第二个字符串,问你最少需要刷多少次?
 
解题思路:显然这是一道区间DP的题。设dp[i][j]表示区间[i,j]内最少需要刷多少次。直接确定状态转移方程不太好确定,所以我们需要考虑直接将一个空串刷成第二个字符串,然后再与第一个字符串去比较。这样,如果每个字符都是单独刷新,则dp[i][j] = dp[i+1][j]+1,如果在区间[i+1,j]之间有字符与t[i]相同,则可以将区间分为两个区间,分别为[i+1,k]和[k+1,j],考虑一起刷新。详见代码。
 
附上AC代码:
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 const int maxn = 105;
 4 char s[maxn], t[maxn];
 5 int dp[maxn][maxn];
 6 
 7 int main(){
 8     while (~scanf("%s%s", s, t)){
 9         memset(dp, 0, sizeof(dp));
10         int len = strlen(s);
11         for (int j=0; j<len; ++j)
12             for (int i=j; i>=0; --i){
13                 dp[i][j] = dp[i+1][j]+1;        // 每一个都单独刷
14                 for (int k=i+1; k<=j; ++k)
15                     if (t[i] == t[k])            // 区间内有相同颜色,考虑一起刷
16                         dp[i][j] = min(dp[i][j], dp[i+1][k]+dp[k+1][j]);
17             }
18         for (int i=0; i<len; ++i){
19             if (s[i] == t[i]){    // 对应位置相同,可以不刷
20                 if (i)
21                     dp[0][i] = dp[0][i-1];
22                 else
23                     dp[0][i] = 0;
24             }
25             else
26                 for (int j=0; j<i; ++j)        // 寻找当前区间的最优解
27                     dp[0][i] = min(dp[0][i], dp[0][j]+dp[j+1][i]);
28         }
29         printf("%d\n", dp[0][len-1]);
30     }
31     return 0;
32 }
View Code

 

posted on 2016-10-09 01:52  Silenceneo  阅读(704)  评论(0编辑  收藏  举报

导航