HDU 4927 Series 1 ( 组合+高精度)
大意:
题意不好翻译,英文看懂也不是很麻烦,就不翻译了。
Problem Description
Let A be an integral series {A1, A2, . . . , An}.
The zero-order series of A is A itself.
The first-order series of A is {B1, B2, . . . , Bn-1},where Bi = Ai+1 - Ai.
The ith-order series of A is the first-order series of its (i - 1)th-order series (2<=i<=n - 1).
Obviously, the (n - 1)th-order series of A is a single integer. Given A, figure out that integer.
The zero-order series of A is A itself.
The first-order series of A is {B1, B2, . . . , Bn-1},where Bi = Ai+1 - Ai.
The ith-order series of A is the first-order series of its (i - 1)th-order series (2<=i<=n - 1).
Obviously, the (n - 1)th-order series of A is a single integer. Given A, figure out that integer.
Input
The input consists of several test cases. The first line of input gives the number of test cases T (T<=10).
For each test case:
The first line contains a single integer n(1<=n<=3000), which denotes the length of series A.
The second line consists of n integers, describing A1, A2, . . . , An. (0<=Ai<=105)
For each test case:
The first line contains a single integer n(1<=n<=3000), which denotes the length of series A.
The second line consists of n integers, describing A1, A2, . . . , An. (0<=Ai<=105)
Output
For each test case, output the required integer in a line.
Sample Input
2
3
1 2 3
4
1 5 7 2
Sample Output
0
-5
思路:
比赛中楠姐很快就推出来公式了,想把杨辉三角预处理出来,然后发现BigInteger大小爆内存了。。。。很无语
然后又想在暴力的基础上去优化,然后一直T到死。。。 比赛结束也没搞出来。
赛后才知道,杨辉三角是可以直接用组合公式推出来的。。。
杨辉三角的第n行的第m个数为组合数c[n-1][m-1]。
应用c[n][m] = c[n][m-1]*(n-m+1)/m,就可以快速递推出第n行的数,这样既避免了打表会出现的爆内存,也省去了暴力好多的时间。。。。。
还是太年轻 哎。。。
1 import java.io.*; 2 import java.math.*; 3 import java.util.*; 4 public class Main { 5 6 static BigInteger coe[][] = new BigInteger [3010][3010]; 7 public static void main(String[] args) throws IOException{ 8 Scanner cin = new Scanner(System.in); 9 BigInteger []a = new BigInteger[3010]; 10 BigInteger []c = new BigInteger[3010]; 11 int T; 12 T = cin.nextInt(); 13 while(T-- > 0){ 14 int n; 15 n = cin.nextInt(); 16 for(int i = 1; i <= n; ++i){ 17 a[i] = cin.nextBigInteger(); 18 } 19 BigInteger ans = BigInteger.ZERO; 20 c[0] = BigInteger.ONE; 21 ans = ans.add(c[0].multiply(a[n])); 22 int t = -1; 23 for(int i = 1; i < n; ++i){ 24 BigInteger t1 = BigInteger.valueOf(n).subtract(BigInteger.valueOf(i)); 25 BigInteger t2 = BigInteger.valueOf(i); 26 c[i] = c[i-1].multiply(t1).divide(t2); 27 ans = ans.add(c[i].multiply(a[n-i]).multiply(BigInteger.valueOf(t))); 28 t *= -1; 29 } 30 System.out.println(ans); 31 } 32 33 } 34 }