POJ 1410 Intersection(线段相交&&判断点在矩形内&&坑爹)
大意:给你一条线段,给你一个矩形,问是否相交。
相交:线段完全在矩形内部算相交;线段与矩形任意一条边不规范相交算相交。
思路:知道具体的相交规则之后题其实是不难的,但是还有个坑点就是题目里明明说给的是矩形左上角跟右下角的点,但实际上不是,需要重新判断一下...真坑。
1 struct Point 2 { 3 double x, y; 4 } A, B, C, D; 5 struct Line 6 { 7 Point a, b; 8 } L; 9 10 int n; 11 12 double xmult(Point p1, Point p2, Point p) 13 { 14 return (p1.x-p.x)*(p2.y-p.y)-(p2.x-p.x)*(p1.y-p.y); 15 } 16 17 ///若共线,返回1;不共线,返回0。 18 int dot_inLine(Point p1, Point p2, Point p3){ 19 return zero(xmult(p1, p2, p3)); 20 } 21 ///判两点在线段同侧,点在线段上返回0 22 int same_side(Point p1, Point p2, Line l){ 23 return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) > eps; 24 } 25 ///判点是否在线段上,包括端点 26 int dot_onLine_in(Point p, Line l){ 27 return zero(xmult(p, l.a, l.b)) && (l.a.x-p.x)*(l.b.x-p.x) < eps && (l.a.y-p.y)*(l.b.y-p.y) < eps; 28 } 29 int intersect_in(Line u, Line v){ 30 if (!dot_inLine(u.a, u.b, v.a) 31 || !dot_inLine(u.a, u.b, v.b)) 32 return !same_side(u.a, u.b,v) && !same_side(v.a, v.b,u); 33 return dot_onLine_in(u.a, v) || dot_onLine_in(u.b, v) 34 || dot_onLine_in(v.a, u) || dot_onLine_in(v.b, u); 35 } 36 37 bool is_Inter(Point A, Point B, Point C, Point D, Point t) 38 { 39 if(xmult(t, A, B) > eps && xmult(t, B, C) > eps && xmult(t, C, D) > eps && xmult(t, D, A) > eps) 40 return true; 41 if(xmult(t, A, B) < eps && xmult(t, B, C) < eps && xmult(t, C, D) < eps && xmult(t, D, A) < eps) 42 return true; 43 if(t.x >= A.x && t.x <= B.x && t.y >= C.y && t.y <= B.y && (zero(xmult(t, A, B)) || zero(xmult(t, B, C)) || zero(xmult(t, C, D)) || zero(xmult(t, D, A)))) 44 return true; 45 return false; 46 } 47 48 int T; 49 50 void Solve() 51 { 52 scanf("%d", &T); 53 while(T--) 54 { 55 scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &L.a.x, &L.a.y, &L.b.x, &L.b.y, &C.x, &C.y, &D.x, &D.y); 56 A.x = min(C.x, D.x); 57 A.y = max(C.y, D.y); 58 C.x = max(C.x, D.x); 59 C.y = min(C.y, D.y); 60 B.x = C.x, B.y = A.y; 61 D.x = A.x, D.y = C.y; 62 if(is_Inter(A, B, C, D, L.a) && is_Inter(A, B, C, D, L.b)) 63 { 64 printf("T\n"); 65 } 66 else if(intersect_in((Line){A, B}, L) || intersect_in((Line){B, C,}, L) || intersect_in((Line){C, D}, L) || intersect_in((Line){D, A}, L)) 67 { 68 printf("T\n"); 69 } 70 else 71 { 72 printf("F\n"); 73 } 74 } 75 }