BZOJ——2101: [Usaco2010 Dec]Treasure Chest 藏宝箱
http://www.lydsy.com/JudgeOnline/problem.php?id=2101
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 539 Solved: 294
[Submit][Status][Discuss]
Description
Bessie and Bonnie have found a treasure chest full of marvelous gold coins! Being cows, though, they can't just walk into a store and buy stuff, so instead they decide to have some fun with the coins. The N (1 <= N <= 5,000) coins, each with some value C_i (1 <= C_i <= 5,000) are placed in a straight line. Bessie and Bonnie take turns, and for each cow's turn, she takes exactly one coin off of either the left end or the right end of the line. The game ends when there are no coins left. Bessie and Bonnie are each trying to get as much wealth as possible for themselves. Bessie goes first. Help her figure out the maximum value she can win, assuming that both cows play optimally. Consider a game in which four coins are lined up with these values: 30 25 10 35 Consider this game sequence: Bessie Bonnie New Coin Player Side CoinValue Total Total Line Bessie Right 35 35 0 30 25 10 Bonnie Left 30 35 30 25 10 Bessie Left 25 60 30 10 Bonnie Right 10 60 40 -- This is the best game Bessie can play.
Input
* Line 1: A single integer: N * Lines 2..N+1: Line i+1 contains a single integer: C_i
Output
* Line 1: A single integer, which is the greatest total value Bessie can win if both cows play optimally.
Sample Input
30
25
10
35
Sample Output
HINT
(贝西最好的取法是先取35,然后邦妮会取30,贝西再取25,邦妮最后取10)
Source
区间DP:f[l][r]表示区间[l,r]之间取硬币的最优结果,那么
如果,贝西取在l点,则邦妮去完f[l+1][r],f[l][r]=sum[r]-sum[l-1]-f[l+1][r],贝西取在r同理
1 #include <cstdio> 2 3 #define max(a,b) (a>b?a:b) 4 #define min(a,b) (a<b?a:b) 5 6 inline void read(int &x) 7 { 8 x=0; register char ch=getchar(); 9 for(; ch>'9'||ch<'0'; ) ch=getchar(); 10 for(; ch>='0'&&ch<='9'; ch=getchar()) x=x*10+ch-'0'; 11 } 12 13 const int N(5233); 14 int f[N][N],sum[N]; 15 int n,w[5005]; 16 17 int Presist() 18 { 19 read(n); 20 for(int i=1; i<=n; ++i) 21 { 22 read(w[i]); 23 f[i][i]=w[i]; 24 sum[i]=sum[i-1]+w[i]; 25 } 26 for(int L=2; L<=n; ++L) 27 for(int r,l=1; l<=n-L+1; ++l) 28 { 29 r=l+L-1; 30 f[l][r]=max(f[l][r],sum[r]-sum[l-1]- 31 min(f[l+1][r],f[l][r-1])); 32 } 33 printf("%d\n",f[1][n]); 34 return 0; 35 } 36 37 int Aptal=Presist(); 38 int main(int arg,char**argv){;}
该题需要压维、
1 #include <cstdio> 2 3 #define max(a,b) (a>b?a:b) 4 #define min(a,b) (a<b?a:b) 5 6 inline void read(int &x) 7 { 8 x=0; register char ch=getchar(); 9 for(; ch>'9'||ch<'0'; ) ch=getchar(); 10 for(; ch>='0'&&ch<='9'; ch=getchar()) x=x*10+ch-'0'; 11 } 12 13 const int N(5233); 14 int n,f[N],sum[N]; 15 16 int Presist() 17 { 18 read(n); 19 for(int w,i=1; i<=n; ++i) 20 { 21 read(w), f[i]=w; 22 sum[i]=sum[i-1]+w; 23 } 24 for(int L=1; L<n; ++L) 25 for(int r,l=1; l<=n-L; ++l) 26 f[l]=sum[l+L]-sum[l-1]-min(f[l+1],f[l]); 27 printf("%d\n",f[1]); 28 return 0; 29 } 30 31 int Aptal=Presist(); 32 int main(int arg,char**argv){;}