[bzoj4282]慎二的随机数列_动态规划_贪心
慎二的随机数列 bzoj-4282
题目大意:一个序列,序列上有一些数是给定的,而有一些位置上的数可以任意选择。问最长上升子序列。
注释:$1\le n\le 10^5$。
想法:结论:逢N必选。N是可以任意选择的位置。
具体的,我们将所有N踢出序列,将给定的权值-=前面N的个数。再在当前序列上求最长上升子序列。
正确性的话如果当前序列中的数:
如果前面的数小于后面的数,显然中间的N我也可以加上。
如果前面的数大于后面的数:
如果前面的数在原序列中的权值大于后面的数在原序列中的权值,那么这两个数无论如何都不能同时选择。
而如果前面的数在原序列中的数小于后面的数在原序列中的权值,那么我们选择抛弃后面的数转而选择中间的所有N,显然更优。
最后,附上丑陋的代码... ...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #define N 100010 using namespace std; int dp[N],sum,a[N],cnt; int q[N]; int maxn=0; int main() { int n; cin >> n ; char opt[10]; for ( int i=1;i<=n;i++) { scanf ( "%s" ,opt+1); if (opt[1]== 'K' ) { int x; scanf ( "%d" ,&x); x-=sum; a[++cnt]=x; } else sum++; } int ans=0; for ( int i=1;i<=cnt;i++) { int l=0,r=ans; while (l!=r) { int mid=(l+r+1)>>1; if (a[q[mid]]<a[i]) l=mid; else r=mid-1; } l++; ans=max(ans,l); q[l]=i; } printf ( "%d\n" ,ans+sum); } |
小结:这题...不禁让我想到了Claris的CDQ分治+扫描线+树状数组...
证明对于计算机竞赛的用处,就是可以简化一个复杂的算法(个人理解)。
| 欢迎来原网站坐坐! >原文链接<
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Linux系统下SQL Server数据库镜像配置全流程详解
· 现代计算机视觉入门之:什么是视频
· 【译】我们最喜欢的2024年的 Visual Studio 新功能
· 个人数据保全计划:从印象笔记迁移到joplin
· Vue3.5常用特性整理
· 重拾 SSH:从基础到安全加固
· 为什么UNIX使用init进程启动其他进程?