[bzoj4665]小w的喜糖_二项式反演
小w的喜糖
题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4665
数据范围:略。
题解:
二项式反演裸题。
$f_{i,j}$表示,前$i$种钦定$j$拿到自己种类糖果的方案数。
求完了之后可以二项式反演回来即可。
代码:
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int mod = 1000000009 ; int n, m; ll ans; int col[2010], s[2010], v[2010]; ll c[2010][2010], f[2010][2010], jc[2010], ine[2010], jcc[2010]; char *p1, *p2, buf[100000]; #define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ ) int rd() { int x = 0, f = 1; char c = nc(); while (c < 48) { if (c == '-') f = -1; c = nc(); } while (c > 47) { x = (((x << 2) + x) << 1) + (c ^ 48), c = nc(); } return x * f; } int main() { n = rd(); for (int i = 0; i <= n; i ++ ) { c[i][0] = 1; for(int j = 1; j <= i; j ++ ) { c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod; } } jc[0] = ine[0] = jcc[0] = jc[1] = ine[1] = jcc[1] = 1; for (int i = 2; i <= n; i ++ ) { jc[i] = (ll)jc[i - 1] * i % mod; ine[i] = mod - (mod / i) * ine[mod % i] % mod; jcc[i] = (ll)jcc[i - 1] * ine[i] % mod; } for (int i = 1; i <= n; i ++ ) { col[i] = rd(); } sort(col + 1, col + n + 1); for (int i = 1; i <= n; i ++ ) { if (col[i] > col[i - 1]) { m ++ ; } v[m] ++ ; } for(int i = 1; i <= m; i ++ ) { s[i] = s[i - 1] + v[i]; } f[0][0] = 1; for (int i = 1; i <= m; i ++ ) { for (int j = 0; j <= s[i - 1]; j ++ ) { for (int k = 0; k <= v[i]; k ++ ) { f[i][j + k] = (f[i][j + k] + (ll)f[i-1][j] * c[v[i]][k] % mod * jc[v[i]] % mod * jcc[v[i] - k] % mod) % mod; } } } for (int i = 0; i <= n; i ++ ) { ans = (ans + (ll)((i & 1) ? -1 : 1) * f[m][i] * jc[n - i] + mod) % mod; } for (int i = 1; i <= m; i ++ ) { ans = (ll)ans * jcc[v[i]] % mod; } cout << ans << endl ; return 0; }
| 欢迎来原网站坐坐! >原文链接<