树的直径【树的重心 / 树的质心】(填坑中)

定义:

对于一棵树n个节点的无根树,找到一个点,将树变成以该点为根的有根树,而重心则是删除某节点 Node 之后能使得最大子树的结点数最小的节点。

性质:

  1.删除重心后所得的所有子树,节点数不超过原树的1/2,一棵树最多有两个相邻的重心;

  2.树中所有节点到重心的距离之和最小,如果有两个重心,那么他们距离之和相等;

  3.两个树通过一条边合并,新的重心在原树两个重心的路径上;

  4.树删除或添加一个叶子节点,重心最多只移动一条边;

1)Balancing Act

题意:

 对于N个节点N-1条边相连接的树,问这棵树的重心和对应的最大子树的节点数为多少

题解:

 

#include <iostream>
#include <map>
#include <vector>
#include <queue>
#include <string>
#include <set>
#include <algorithm>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <list>
#include <deque>
#include <queue>
#include <stack>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <iomanip>
#pragma GCC optimize(2)
using namespace std;
const int inf=0x3f3f3f3f;
#define ll long long
#define ull unsigned long long
const int mod = 1e9+7;/// 998244353;
const int mxn = 2e4 +7;
const int N = 8e4 + 7 ;
int _ , n , m , t , k , ans , cnt , si ;
template <class T>
void rd(T &x){
    T flag = 1 ; x = 0 ; char ch = getchar() ;
    while(!isdigit(ch)) { if(ch=='-') flag = -1; ch = getchar(); }
    while(isdigit(ch)) { x = (x<<1) + (x<<3) + (ch^48); ch = getchar(); }
    x*=flag;
}
vector<int> G[mxn] ;
int deg[mxn] , mn_son = 0 , mn_node = 0 , head[mxn<<1] , to[mxn<<1] , nx[mxn<<1] ; 
void add(int u,int v) { to[cnt] = v , nx[cnt] = head[u] , head[u] = cnt++; }
void DFS(int x,int par)
{
    deg[x]++ ;
    int mx_son = 0 ;
    for(int i=head[x];~i;i=nx[i]){
        int v = to[i] ;
        if(v==par) continue ;
        DFS(v,x);
        deg[x] += deg[v] ;
        mx_son = max(mx_son , deg[v]);
    }
    mx_son = max(mx_son , n-deg[x]) ;
    if(mn_son > mx_son)
        mn_node = x , mn_son = mx_son ; 
}
void solve()
{
    for(rd(t);t;t--){
        rd(n) ; 
        mn_node = 0 , mn_son = mod ; cnt = 0 ;
        memset(head,-1,sizeof(head));
        memset(deg,0,sizeof(deg));
        for(int i=1,u,v;i<n;i++){
            rd(u) , rd(v) ;
            add(u,v) , add(v,u) ;
        }
        DFS(1,0);
        printf("%d %d\n",mn_node,mn_son );
    }
}
int main()
{
    ios::sync_with_stdio(false); cin.tie(0) ; cout.tie(0);
    solve();
}
View Code

 

2)Cotree

题意:

由N个点构成两棵树,问在两颗树之间连接一条边之后,各点之间距离和的最小值为多少

题解:

 进行两次DFS找到两颗树的重心,将两个重心连接起来,再进行一次DFS求出距离和即可

#include <iostream>
#include <map>
#include <vector>
#include <queue>
#include <string>
#include <set>
#include <algorithm>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <list>
#include <deque>
#include <queue>
#include <stack>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <iomanip>
#pragma GCC optimize(2)
#define ll long long
#define ull unsigned long long
using namespace std;
template <class T>
void rd(T &x){
    x = 0 ;T flag = 1 ;char ch = getchar();
    while(!isdigit(ch)) { if(ch=='-') flag = -1 ; ch = getchar() ; }
    while(isdigit(ch)) { x = (x<<1) + (x<<3) + (ch^48) ; ch = getchar(); }
    x*= flag ;
}
const int INF=0x3f3f3f3f;
const int mxn = 1e5+7;
ll t,n,m,k,cnt,node_1,node_2,ans_1,ans_2,mn_son = 0 , mn_node = 0 , res , ans ;
int head[mxn<<2] , to[mxn<<2] , nx[mxn<<2] ,deg[mxn<<2] ;
int vis[mxn<<2] ;
void add(int u,int v){ to[cnt] = v , nx[cnt] = head[u] , head[u] = cnt++; }
void DFS_INIT(int x) /// 计算两颗子树的节点数量
{
    if(vis[x]) return ;
    res++; vis[x] = 1 ;
    for(int i=head[x];~i;i=nx[i]) if(!vis[to[i]]) DFS_INIT(to[i]); /// 
}
void DFS(int x,int par,int n)
{
    deg[x]=1; int mx_son = 0 ;
    for(int i=head[x];~i;i=nx[i]){
        int v = to[i] ;
        if(v==par) continue;
        DFS(v,x,n);
        deg[x] += deg[v] ;
        mx_son = max(mx_son , deg[v]);/// 子树的最大节点个数
    }
    mx_son = max(mx_son,n-deg[x]); /// 子树的最大节点个数
    if( mx_son < mn_son ){
        mn_son = mx_son , mn_node = x ;
    }
}
void DFS_END(int x,int par)
{
    deg[x] = 1 ;
    for(int i=head[x];~i;i=nx[i]){
        int v = to[i] ;
        if(v==par) continue;
        DFS_END(v,x) ;
        deg[x] += deg[v];
        ans+=(ll)(deg[v])*(ll)(n-deg[v]);
    }
}
int main()
{
    while(~scanf("%lld",&n)){
        cnt = 0 ;
        memset(deg,0,sizeof(deg));
        memset(head,-1,sizeof(head));
        for(int i=1,u,v;i<=n-2;i++){
            rd(u) , rd(v) ;
            add(u,v) , add(v,u) ;
        }
        memset(vis,0,sizeof(vis));
        int n1 = 0 , n2 = 0 ; res = 0 ;
        DFS_INIT(1) , node_1 = 1 , n1 = res , res = 0 ;
        for(int i=1;i<=n;i++){
            if(!vis[i]) {
                DFS_INIT(i) , n2 = res , node_2 = i , res = 0 ;
                break;
            }
        }
        mn_son = INF ; int e1 , e2 ;
        DFS(node_1,0,n1) , e1 = mn_node ,mn_son = INF ;
        DFS(node_2,0,n2) , e2 = mn_node ,mn_son = INF ;
        ///cout<<e1<<" -- "<<e2<<endl;
        add(e1,e2) , add(e2,e1);
        ans = 0 ; DFS_END(1,0);
        printf("%lld\n",ans);
    }
    return 0;
}
View Code

 

3)C. Link Cut Centroids

题意:

在N个点的树中,通过删除一条边,连接一条边使得新树只有一个重心,并输出删除和连接的点

题解:

通过DFS判断存在几个重心,然后找到一个重心的子树的叶子节点,如果是一个重心,那么输出两遍叶子节点和连接的点;如果是两个重心,则将找到的叶子节点连接到另一个重心上

#include <iostream>
#include <map>
#include <vector>
#include <queue>
#include <string>
#include <set>
#include <algorithm>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <list>
#include <deque>
#include <queue>
#include <stack>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <iomanip>
#pragma GCC optimize(2)
using namespace std;
const int inf=0x3f3f3f3f;
#define ll long long
#define ull unsigned long long
const int mod = 1e9+7;/// 998244353;
const int mxn = 1e5 +7;
int _ , n , m , t , k , ans , cnt , si , res ;
template <class T>
void rd(T &x){
    T flag = 1 ; x = 0 ; char ch = getchar() ;
    while(!isdigit(ch)) { if(ch=='-') flag = -1; ch = getchar(); }
    while(isdigit(ch)) { x = (x<<1) + (x<<3) + (ch^48); ch = getchar(); }
    x*=flag;
}
vector<int> G[mxn] ;
int deg[mxn] , _son = 0 , _node = 0 , head[mxn<<1] , to[mxn<<1] , nx[mxn<<1] , id[5] , node ; 
void add(int u,int v){ to[cnt] = v , nx[cnt] = head[u] , head[u] = cnt++ ; }
void DFS(int u,int par)
{
    deg[u] = 1 ; int son = 0 ;
    for(int i=head[u];~i;i=nx[i]){
        int v = to[i] ;
        if(v==par) continue ;
        DFS(v,u);
        deg[u] += deg[v] ;
        son = max(son,deg[v]);
    }
    son = max(son,n-deg[u]);
    if( son < _son )
        res = 0 , _son = son , _node = u , id[res++] = u ;
    else if(son==_son){
        id[res++] = u ;
    }
}
void _DFS(int x,int par)
{
    if(deg[x]==1) {
        node = x ;
        return ;
    }
    for(int i=head[x];~i;i=nx[i]){
        int v = to[i] ;
        if(v==par || v==id[1]) continue ;
        _DFS(v,x);
    }
}
void solve()
{
    for(rd(t);t;t--){
        rd(n);
        memset(head,-1,sizeof(head));
        memset(deg,0,sizeof(deg));
        for(int i=1,u,v;i<n;i++){
            rd(u) , rd(v) ;
            add(u,v) , add(v,u) ;
        }
        _son = inf ;
        DFS(1,0);
        if(res==1){
            for(int j=1;j<=n;j++){
                if(deg[j]==1){
                    for(int i=head[j];~i;i=nx[i]){
                        printf("%d %d\n%d %d\n",j,to[i],j,to[i]);
                        break;
                    }
                    break;
                }
            }
        } else {
            _DFS(id[0],0);
            for(int i=head[node];~i;i=nx[i]){
                printf("%d %d\n%d %d\n",node,to[i],id[1],node);
                break;
            }
        }
    }
}
int main()
{
    /// freopen("input.in","r",stdin) ; freopen("output.in","w",stdout) ;
    ios::sync_with_stdio(false); cin.tie(0) ; cout.tie(0);
    solve();
}
View Code

 

posted @ 2020-09-13 23:25  __MEET  阅读(153)  评论(0编辑  收藏  举报