BZOJ 4827 [Hnoi2017]礼物 ——FFT
题目上要求一个循环卷积的最小值,直接破环成链然后FFT就可以了。
然后考虑计算的式子,可以分成两个部分分开计算。
前半部分FFT,后半部分扫一遍。
#include <map> #include <ctime> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i) #define D(i,j,k) for (int i=j;i>=k;--i) #define ll long long #define double long double #define llinf 10000000000000000LL #define maxn 500005 #define eps 1e-6 struct Complex{ double x,y; Complex (){} Complex (double _x,double _y){x=_x;y=_y;} Complex operator + (Complex a) {return Complex(x+a.x,y+a.y);} Complex operator - (Complex a) {return Complex(x-a.x,y-a.y);} Complex operator * (Complex a) {return Complex(x*a.x-y*a.y,x*a.y+y*a.x);} }A[maxn],B[maxn]; const double pi=acos(-1.0); int rev[maxn]; ll ans=llinf,res[maxn],sumA2=0,sumB2=0,sumA=0,sumB=0; void FFT(Complex *x,int n,int flag) { F(i,0,n-1) if (rev[i]>i) swap(x[rev[i]],x[i]); for (int m=2;m<=n;m<<=1) { Complex wn=Complex(cos(2*pi/m),flag*sin(2*pi/m)); for (int i=0;i<n;i+=m) { Complex w=Complex(1.0,0); for (int j=0;j<(m>>1);++j) { Complex u=x[i+j],v=x[i+j+(m>>1)]*w; x[i+j]=u+v;x[i+j+(m>>1)]=u-v; w=w*wn; } } } } int n,m,L=0; int main() { scanf("%d%d",&n,&m); F(i,0,n-1) { int x;scanf("%d",&x); A[i].x=x; sumA+=x; sumA2+=(ll)x*x; } D(i,n-1,0) { int x;scanf("%d",&x); B[i].x=x; sumB+=x; sumB2+=(ll)x*x; B[i+n].x=B[i].x; } for(m=1;m<=4*n;m<<=1);while(!(m>>L&1))L++; F(i,0,m-1)rev[i]=(rev[i>>1]>>1)|((i&1)<<(L-1)); FFT(A,m,1);FFT(B,m,1);F(i,0,m-1)A[i]=A[i]*B[i];FFT(A,m,-1); F(i,0,m-1) res[i]=(A[i].x+0.4)/m; F(i,-100,100) { ll tmp=2*i*(sumA-sumB)+n*i*i; F(j,n-1,2*n-1) ans=min(ans,sumA2+sumB2+tmp); } ll tmp=-llinf; F(i,n-1,2*n-1) tmp=max(tmp,res[i]); ans-=2*tmp; printf("%lld\n",ans); }