BZOJ 3771 Triple ——FFT
直接暴力卷积+统计就可以了。
去重比较复杂。
其实也不复杂,抄吧!
反正AC了。
#include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i) #define D(i,j,k) for (int i=j;i>=k;--i) #define ll long long #define mp make_pair #define maxn 400005 const double pi=acos(-1.0); struct Complex{ double x,y; Complex(){} Complex(double _x,double _y){x=_x;y=_y;} Complex operator + (Complex a) {return Complex(x+a.x,y+a.y);} Complex operator - (Complex a) {return Complex(x-a.x,y-a.y);} Complex operator * (Complex a) {return Complex(x*a.x-y*a.y,x*a.y+y*a.x);} }x[maxn],y[maxn],z[maxn],ans3[maxn],ans2[maxn],c[maxn],ans1[maxn],ans[maxn]; int n,a[maxn],mx=0,m=1,len,rev[maxn]; void FFT(Complex * x,int n,int flag) { F(i,0,n-1) if (rev[i]>i) swap(x[i],x[rev[i]]); for (int m=2;m<=n;m<<=1) { Complex wn=Complex(cos(2*pi/m),flag*sin(2*pi/m)); for (int i=0;i<n;i+=m) { Complex w=Complex(1.0,0); for (int j=0;j<(m>>1);++j) { Complex u=x[i+j],v=x[i+j+(m>>1)]*w; x[i+j]=u+v; x[i+j+(m>>1)]=u-v; w=w*wn; } } } } int main() { scanf("%d",&n); F(i,1,n) { scanf("%d",&a[i]); x[a[i]].x+=1; y[a[i]*2].x+=1; z[a[i]*3].x+=1; mx=max(mx,a[i]); } n=mx*3+5;while (m<=n) m<<=1,len++; n=m; F(i,0,n-1) { int ret=0,t=i; F(j,1,len) ret<<=1,ret|=t&1,t>>=1; rev[i]=ret; } FFT(x,n,1); FFT(y,n,1); FFT(z,n,1); F(i,0,n-1) c[i]=x[i]*x[i]*x[i]; FFT(c,n,-1); F(i,0,n-1) ans3[i].x+=c[i].x/n; F(i,0,n-1) c[i]=x[i]*y[i]; FFT(c,n,-1); F(i,0,n-1) ans3[i].x-=3*c[i].x/n; F(i,0,n-1) c[i]=z[i]; FFT(c,n,-1); F(i,0,n-1) ans3[i].x+=2*c[i].x/n; F(i,0,n-1) ans3[i].x=(ans3[i].x+0.3)/6; F(i,0,n-1) c[i]=x[i]*x[i]; FFT(c,n,-1); F(i,0,n-1) ans2[i].x+=c[i].x/n; F(i,0,n-1) c[i]=y[i]; FFT(c,n,-1); F(i,0,n-1) ans2[i].x-=c[i].x/n; F(i,0,n-1) ans2[i].x=(ans2[i].x+0.3)/2; F(i,0,n-1) c[i]=x[i]; FFT(c,n,-1); F(i,0,n-1) ans1[i].x+=c[i].x/n; F(i,0,n-1) ans[i].x=ans2[i].x+ans3[i].x+ans1[i].x; F(i,0,n-1) if ((int)ans[i].x>0) printf("%d %d\n",i,(int)ans[i].x); }