BZOJ 4556 [Tjoi2016&Heoi2016]字符串 ——后缀数组 ST表 主席树 二分答案
Solution 1:
后缀数组暴力大法好
#include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i) #define D(i,j,k) for (int i=j;i>=k;--i) #define ll long long #define mp make_pair #define maxn 300005 struct Suffix_Array{ int s[maxn]; int tmp[maxn],rk[maxn],sa[maxn],cnt[maxn],h[maxn]; void build(int n,int m) { int i,j,k; n++; F(i,0,2*n+5) tmp[i]=rk[i]=sa[i]=h[i]=0; F(i,0,m-1) cnt[i]=0; F(i,0,n-1) cnt[rk[i]=s[i]]++; F(i,1,m-1) cnt[i]+=cnt[i-1]; F(i,0,n-1) sa[--cnt[rk[i]]]=i; for (int k=1;k<=n;k<<=1) { F(i,0,n-1){j=sa[i]-k;if(j<0)j+=n;tmp[cnt[rk[j]]++]=j;} sa[tmp[cnt[0]=0]]=j=0; F(i,1,n-1) { if (rk[tmp[i]]!=rk[tmp[i-1]]||rk[tmp[i]+k]!=rk[tmp[i-1]+k]) cnt[++j]=i; sa[tmp[i]]=j; } memcpy(rk,sa,(n+1)*sizeof (int)); memcpy(sa,tmp,(n+1)*sizeof (int)); if (j>=n-1) break; } for (i=k=0;i<n;h[rk[i++]]=k) for (k?k--:0,j=sa[rk[i]-1];s[i+k]==s[j+k];k++); } void work(int n,int m) { F(t,1,m) { int a,b,c,d;scanf("%d%d%d%d",&a,&b,&c,&d); a--;b--;c--;d--; int mx=0,mn=d-c+1,mid=rk[c]; if (a<=c&&b>=c) mx=min(d-c+1,b-c+1); for (int i=mid;i>1;--i) { if (mn<=mx) break; mn=min(mn,h[i]); if (sa[i-1]>=a&&sa[i-1]<=b) mx=max(mx,min(mn,b-sa[i-1]+1)); } mn=d-c+1; for (int i=mid+1;i<=n;++i) { if (mn<=mx) break; mn=min(mn,h[i]); if (sa[i]>=a&&sa[i]<=b) mx=max(mx,min(mn,b-sa[i]+1)); } printf("%d\n",mx); } } }SA; int n,m; char s[maxn]; int main() { scanf("%d%d",&n,&m); scanf("%s",s); F(i,0,n-1) SA.s[i]=s[i]-'a'+1; SA.s[n]=0; SA.build(n,30); SA.work(n,m); }
Solution 2:
后缀数组 二分答案 主席数 ST表
每次询问二分答案,然后找出要匹配的串在SA中最左以及最右的位置,然后主席树判断即可。这样貌似是两个$\log$
可以在主席树上直接找前驱后继,然后ST表直接查询,然后就成了一个$\log$
我比较菜,写的是第一种。不过一次写对还是挺欣慰的,(废话,你慢慢写了3h)
#include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i) #define D(i,j,k) for (int i=j;i>=k;--i) #define mp make_pair #define maxn 200005 namespace SA{ int tmp[maxn],s[maxn],cnt[maxn],rk[maxn],sa[maxn],h[maxn]; int st[maxn][21],_log[maxn]; void build(int n,int m) { int i,j,k; n++; F(i,0,2*n+1) tmp[i]=rk[i]=sa[i]=h[i]=0; F(i,0,m-1) cnt[i]=0; F(i,0,n-1) cnt[rk[i]=s[i]]++; F(i,1,m-1) cnt[i]+=cnt[i-1]; F(i,0,n-1) sa[--cnt[rk[i]]]=i; for (int k=1;k<=n;k<<=1) { F(i,0,n-1){j=sa[i]-k;if(j<0)j+=n;tmp[cnt[rk[j]]++]=j;} sa[tmp[cnt[0]=0]]=j=0; F(i,1,n-1) { if (rk[tmp[i]]!=rk[tmp[i-1]]||rk[tmp[i]+k]!=rk[tmp[i-1]+k]) cnt[++j]=i; sa[tmp[i]]=j; } memcpy(rk,sa,(n+1)*sizeof(int)); memcpy(sa,tmp,(n+1)*sizeof(int)); if (j>=n-1) break; } for (i=k=0;i<n;h[rk[i++]]=k) for (k?k--:0,j=sa[rk[i]-1];s[i+k]==s[j+k];k++); F(i,1,n-1) st[i][0]=h[i]; F(i,2,n-1) _log[i]=_log[i>>1]+1; F(i,1,20) F(j,1,n-(1<<i)) st[j][i]=min(st[j][i-1],st[j+(1<<i-1)][i-1]); } int query(int a,int b,int n) { if (a==b) return n-sa[a]; a++; int tmp=_log[b-a+1]; return min(st[a][tmp],st[b-(1<<tmp)+1][tmp]); } int lcp(int a,int b,int n) { a=rk[a],b=rk[b]; if (a>b) swap(a,b); if (a==b) return n-sa[a]; a++; int tmp=_log[b-a+1]; return min(st[a][tmp],st[b-(1<<tmp)+1][tmp]); } } namespace PT{ int ls[maxn<<4],rs[maxn<<4],sum[maxn<<4],rt[maxn],tot=0; void modify(int o1,int & o2,int l,int r,int X,int f) { o2=++tot;sum[o2]=sum[o1]+f;if (l==r) return ;int mid=l+r>>1; if (X<=mid) rs[o2]=rs[o1],modify(ls[o1],ls[o2],l,mid,X,f); else ls[o2]=ls[o1],modify(rs[o1],rs[o2],mid+1,r,X,f); } int query(int o1,int o2,int l,int r,int L,int R) { if (L<=l&&r<=R) return sum[o2]-sum[o1]; int mid=l+r>>1,ret=0; if (L<=mid) ret+=query(ls[o1],ls[o2],l,mid,L,R); if (R>mid) ret+=query(rs[o1],rs[o2],mid+1,r,L,R); return ret; } } int n,m;char s[maxn]; bool check(int l,int r,int x,int mid) { int pos=SA::rk[x]; //printf("The Postion is %d\n",pos); int ll=1,rr=pos,posl,posr; while (ll<rr) { int mmiidd=(ll+rr)/2; if (SA::query(mmiidd,pos,n)>=mid) rr=mmiidd; else ll=mmiidd+1; } posl=rr; ll=pos,rr=n; while (ll<rr) { int mmiidd=(ll+rr)/2+1; if (SA::query(pos,mmiidd,n)>=mid) ll=mmiidd; else rr=mmiidd-1; } posr=ll; if (PT::query(PT::rt[l-1],PT::rt[r],1,n,posl,posr)) return true; else return false; } int main() { scanf("%d%d",&n,&m); scanf("%s",s); F(i,0,n-1) SA::s[i]=s[i]-'a'+1; SA::s[n]=0; SA::build(n,30); F(i,0,n-1) { PT::modify(PT::rt[i-1],PT::rt[i],1,n,SA::rk[i],1); } F(i,1,m) { int a,b,c,d,mx; scanf("%d%d%d%d",&a,&b,&c,&d); a--;b--;c--;d--; if (a<=c&&c<=b) mx=min(b-c+1,d-c+1); else mx=0; int l=mx,r=min(d-c+1,b-a+1); while (l<r) { int mid=(l+r)/2+1; if (check(a,b-mid+1,c,mid)) l=mid; else r=mid-1; } printf("%d\n",l); } }