BZOJ 3782 上学路线 ——动态规划 Lucas定理 中国剩余定理

我们枚举第一个经过的坏点,然后DP即可。

状态转移方程不是难点,难点在于组合数的处理。

将狼踩尽的博客中有很详细的证明过程,但是我只记住了结论

$n=a_1 * p^k+a_2*p^k-1...$

$m=b_1 * p^k+b_2*p^k-1...$

$C(_{m}^{n})=C(_{b_1}^{a_1})*...$

大概的意思就是转化成$p$进制下的每一位做组合数,那么我们就可以预处理阶乘以及它的逆元进行计算。

所以说Lucas只能跑过$10^5$当质数很大的时候就放弃。

如果不是质数,那么可以分解质因数,每一个因数做一次Lucas,然后用CRT合并。

以前留下的大坑终于补完了,EXGCD和CRT终于明白了(真是弱(。・・)ノ)

突然发现namespace写起来挺好用的,以后挂链就用它了

注意 1.n<m时候需要判定,因为%意义下会有小的情况产生。

2.随时取模

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair
 
namespace Subtask1{
    const int p=1000003;
    ll fac[p],inv[p];
    void Shaker()
    {
        int i;
        for (fac[0]=1,i=1;i<p;++i)
            fac[i]=fac[i-1]*i%p;
        for (inv[1]=1,i=2;i<p;++i)
            inv[i]=(p-p/i)*inv[p%i]%p;
        for (inv[0]=1,i=1;i<p;++i)
            (inv[i]*=inv[i-1])%=p;
    }
    ll C(ll n,ll m)
    {
        if (n<m) return 0;
        if (n<p&&m<p) return fac[n]*inv[m]*inv[n-m]%p;
        return C(n%p,m%p)*C(n/p,m/p)%p;
    }
}
 
namespace Subtask2{
    const int p=1019663265;
    int pri[]={3,5,6793,10007};
    ll fac[4][10007],inv[4][10007],k1=339887755,k2=407865306,k3=673070820,k4=618502650;
    void Shaker()
    {
        int i,j;
        for (j=0;j<4;++j)
        {
            int np=pri[j];
            for (fac[j][0]=1,i=1;i<np;++i)
                fac[j][i]=fac[j][i-1]*i%np;
            for (inv[j][1]=1,i=2;i<np;++i)
                inv[j][i]=(np-np/i)*inv[j][np%i]%np;
            for (inv[j][0]=1,i=1;i<np;++i)
                (inv[j][i]*=inv[j][i-1])%=np;
        }
    }
    ll C(ll n,ll m,int j)
    {
        int np=pri[j];
        if (n<m) return 0;
        if (n<np&&m<np) return fac[j][n]*inv[j][m]*inv[j][n-m]%np;
        return C(n%np,m%np,j)*C(n/np,m/np,j)%np;
    }
    ll C(ll n,ll m)
    {
        ll r1=C(n,m,0),r2=C(n,m,1),r3=C(n,m,2),r4=C(n,m,3);
        return (r1*k1+r2*k2+r3*k3+r4*k4)%p;
    }
}
 
struct Point{
    ll x,y;
    void read(){scanf("%lld%lld",&x,&y);}
}points[220];
 
bool cmp(Point a,Point b)
{return a.x==b.x?a.y<b.y:a.x<b.x;}
 
ll ksm(ll a,ll b,ll p)
{
    ll ret=1;
    for (;b;b>>=1,(a*=a)%=p)
        if (b&1) (ret*=a)%=p;
    return ret;
}
 
ll f[220],t,n,m;
 
void solve1()
{
    using namespace Subtask1;
    Shaker();
    F(i,1,t)
    {
        f[i]=C(points[i].x+points[i].y,points[i].x);
        F(j,1,i-1) if (points[j].y<=points[i].y)
        {
            (f[i]-=f[j]*C(points[i].x-points[j].x+points[i].y-points[j].y,points[i].x-points[j].x)%p);
            f[i]+=p; f[t]%=p;
        }
    }
}
 
void solve2()
{
    using namespace Subtask2;
    Shaker();
    F(i,1,t)
    {
        f[i]=C(points[i].x+points[i].y,points[i].x);
        F(j,1,i-1) if (points[j].y<=points[i].y)
        {
            (f[i]-=f[j]*C(points[i].x-points[j].x+points[i].y-points[j].y,points[i].x-points[j].x)%p);
            f[i]%=p;f[i]+=p; f[t]%=p;
        }
    }
}
 
void Finout()
{
    freopen("in.txt","r",stdin);
    freopen("wa.txt","w",stdout);
}
 
int main()
{
    ll p;
    scanf("%lld%lld%lld%lld",&n,&m,&t,&p);
    F(i,1,t) points[i].read();++t;points[t].x=n;points[t].y=m;
    sort(points+1,points+t+1,cmp);
    if (p==1000003) solve1(); else solve2();
    cout<<f[t]<<endl;
}

  

posted @ 2017-03-31 19:13  SfailSth  阅读(253)  评论(0编辑  收藏  举报