BZOJ 4161 Shlw loves matrixI ——特征多项式
矩阵乘法递推的新姿势。
叉姐论文里有讲到
利用特征多项式进行递推,然后可以做到k^2logn
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define ll long long #define F(i,j,k) for (int i=j;i<=k;++i) #define D(i,j,k) for (int i=j;i>=k;--i) #define p 1000000007 ll c[4010]; int n,k,u[2010],ans,x,cnt; struct P{int s[2010];}f,t; void mult(P & a,const P & b) { F(i,0,k+k-2) c[i]=0; F(i,0,k-1) F(j,0,k-1) { c[i+j]+=1LL*a.s[i]*b.s[j]; if (c[i+j]>=1LL<<62) c[i+j]%=p; } D(i,k+k-1,0) if (c[i]%=p,i>=k) { F(j,0,k-1) { c[i-1-j]+=c[i]*u[j]; if (c[i-1-j]>=1LL<<62) c[i-1-j]%=p; } c[i]=0; } F(i,0,k-1) a.s[i]=c[i]; } int main() { scanf("%d%d",&n,&k); F(i,0,k-1) { scanf("%d",&u[i]); u[i]=(u[i]%p+p)%p; } for (t.s[1]=f.s[0]=1;n;n>>=1,mult(t,t)) if (n&1) mult(f,t); F(i,0,k-1) { scanf("%d",&x); x=(x%p+p)%p; ans=(ans+1LL*x*f.s[i])%p; } printf("%d\n",ans); }