HDU 4609 3-idiots ——FFT
【题目分析】
一堆小木棍,问取出三根能组成三角形的概率是多少。
Kuangbin的博客中讲的很详细。
构造一个多项式 ai=i的个数。
然后卷积之后去重。
统计也需要去重。
挺麻烦的一道题。
#include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <map> #include <set> #include <queue> #include <string> #include <iostream> #include <algorithm> using namespace std; #define maxn 500005 #define db double #define ll long long #define inf 0x3f3f3f3f #define F(i,j,k) for (int i=j;i<=k;++i) #define D(i,j,k) for (int i=j;i>=k;--i) void Finout() { #ifndef ONLINE_JUDGE freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); #endif } int Getint() { int x=0,f=1; char ch=getchar(); while (ch<'0'||ch>'9') {if (ch=='-') f=-1; ch=getchar();} while (ch>='0'&&ch<='9') {x=x*10+ch-'0'; ch=getchar();} return x*f; } struct Complex{ double x,y; Complex operator + (Complex a) { Complex ret; ret.x=x+a.x; ret.y=y+a.y; return ret;}; Complex operator - (Complex a) { Complex ret; ret.x=x-a.x; ret.y=y-a.y; return ret;}; Complex operator * (Complex a) { Complex ret; ret.x=x*a.x-y*a.y; ret.y=x*a.y+y*a.x; return ret;}; }a[maxn]; ll rev[maxn],n,m,len,T,b[maxn],sum; ll pre_sum[maxn],cnt; const double pi=acos(-1.0); void FFT(Complex * x,int n,int f) { F(i,0,n-1) if (rev[i]>i) swap(x[rev[i]],x[i]); for (int m=2;m<=n;m<<=1) { Complex wn; wn.x=cos(2.0*pi/m*f); wn.y=sin(2.0*pi/m*f); for (int i=0;i<n;i+=m) { Complex w; w.x=1; w.y=0; for (int j=0;j<(m>>1);++j) { Complex u=x[i+j],v=x[i+j+(m>>1)]*w; x[i+j]=u+v; x[i+j+(m>>1)]=u-v; w=w*wn; } } } } bool cmp(int a,int b){return a<b;} int main() { Finout();T=Getint(); while (T--) { memset(a,0,sizeof a); cnt=0; sum=n=Getint(); F(i,1,n) b[i]=Getint(),a[b[i]].x+=1; sort(b+1,b+sum+1,cmp); m=1,len=0;n=b[sum]*2+1; while (m<=n) m<<=1,len++; n=m; F(i,0,n-1) { int t=i,r=0; F(j,1,len) r<<=1,r|=t&1,t>>=1; rev[i]=r; } FFT(a,n,1); F(i,0,n-1) a[i]=a[i]*a[i]; FFT(a,n,-1); F(i,0,n-1) a[i].x=a[i].x/n; F(i,1,sum) a[b[i]<<1].x-=1; F(i,0,n-1) a[i].x/=2; pre_sum[0]=a[0].x+0.5; F(i,1,n-1) pre_sum[i]=pre_sum[i-1]+a[i].x+0.5; F(i,1,sum) { cnt+=pre_sum[n-1]-pre_sum[b[i]]; cnt-=(ll)(i-1)*(sum-i); cnt-=(ll)(sum-1); cnt-=(ll)(sum-i)*(sum-i-1)/2; } ll tot=(ll)sum*(sum-1)*(sum-2)/6; printf("%.7f\n",(db)cnt/tot); } }