CF274D

Lenny had an n × m matrix of positive integers. He loved the matrix so much, because each row of the matrix was sorted in non-decreasing order. For the same reason he calls such matrices of integers lovely.

One day when Lenny was at school his little brother was playing with Lenny's matrix in his room. He erased some of the entries of the matrix and changed the order of some of its columns. When Lenny got back home he was very upset. Now Lenny wants to recover his matrix.

Help him to find an order for the columns of the matrix so that it's possible to fill in the erased entries of the matrix to achieve a lovely matrix again. Note, that you can fill the erased entries of the matrix with any integers.

Input

The first line of the input contains two positive integers n and m (1 ≤ n·m ≤ 105). Each of the next n lines contains m space-separated integers representing the matrix. An integer -1 shows an erased entry of the matrix. All other integers (each of them is between 0 and 109inclusive) represent filled entries.

Output

If there exists no possible reordering of the columns print -1. Otherwise the output should contain m integers p1, p2, ..., pm showing the sought permutation of columns. So, the first column of the lovely matrix will be p1-th column of the initial matrix, the second column of the lovely matrix will be p2-th column of the initial matrix and so on.

Examples
input
3 3
1 -1 -1
1 2 1
2 -1 1
output
3 1 2 
input
2 3
1 2 2
2 5 4
output
1 3 2 
input
2 3
1 2 3
3 2 1
output
-1

加点 拓扑排序

//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=2e5+10;
int n,m,tot;

struct Node{
    int pos,x;
    bool operator <(const Node& b) const{return x<b.x;}
}node[maxn];

int aa,ff;char cc;
int read() {
    aa=0;cc=getchar();
    while((cc<'0'||cc>'9')&&cc!='-') cc=getchar();
    if(cc=='-') ff=-1,cc=getchar(); else ff=1;
    while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar();
    return aa*ff;
}

int fir[maxn],nxt[2*maxn],to[2*maxn],rd[maxn],e=0;
void add(int x,int y) {
    to[++e]=y;nxt[e]=fir[x];fir[x]=e;
    rd[y]++;
}

int zz[maxn],s=1,t=0;
void get_ans() {
    int x,y;
    for(int i=1;i<=m;++i) if(!rd[i]) zz[++t]=i;
    while(s<=t) {
        x=zz[s];
        for(y=fir[x];y;y=nxt[y]) {
            rd[to[y]]--;
            if(!rd[to[y]]) zz[++t]=to[y];
        }
        s++;
    }
    if(t<tot) printf("-1");
    else for(int i=1;i<=t;++i) if(zz[i]<=m) printf("%d ",zz[i]);
}

int main() {
    n=read();m=read();
    int pos,last;
    tot=last=m;
    for(int i=1;i<=n;++i) {
        for(int j=1;j<=m;++j) node[j].pos=j,node[j].x=read();
        sort(node+1,node+m+1);
        pos=1;
        while(node[pos].x==-1&&pos<=m) ++pos;
        if(pos>=m) continue;
        add(node[pos].pos,++tot);pos++;
        while(pos<=m&&node[pos-1].x==node[pos].x) add(node[pos].pos,tot),++pos;
        for(;pos<=m;++pos) {
            if(node[pos].x!=node[pos-1].x) tot++;
            add(node[pos].pos,tot);
            add(tot-1,node[pos].pos);
        }
        last=tot;
    }
    get_ans();
    return 0;
}

  

 

posted @ 2017-08-27 22:03  shixinyi  阅读(225)  评论(0编辑  收藏  举报