题目1544:数字序列区间最小值

时间限制:1秒
内存限制:32 兆
特殊判题:
提交:1013
解决:194



 
题目描述:

给定一个数字序列,查询任意给定区间内数字的最小值。

输入:

输入包含多组测试用例,每组测试用例的开头为一个整数n(1<=n<=100000),代表数字序列的长度。
接下去一行给出n个数字,代表数字序列。数字在int范围内。
下一行为一个整数t(1<=t<=10000),代表查询的次数。
最后t行,每行给出一个查询,由两个整数表示l、r(1<=l<=r<=n)。

输出:

对于每个查询,输出区间[l,r]内的最小值。

样例输入:
5
3 2 1 4 3
3
1 3
2 4
4 5
样例输出:
   1
     1
     3
 
RMQ算法:<< 与 >> 位运算的使用
#include<stdio.h>
#include<math.h>
const int k=17;// 2^16<10^5<2^17
int a[100001];
int f[100001][20];
int n;
int min(int a,int b)
{
    return(a<b?a:b);
}
int rmq()
{
    for (int i=1;i<=n;i++) //初始化
        f[i][0]=a[i];
    for (int j=1;j<k;j++)
        for (int i=1;i<=n;i++)
            if (i+(1<<j)-1<=n)   //通过位运算1<<j表示2^j;
                f[i][j]=min(f[i][j-1],f[i+(1<<j-1)][j-1]);
    return 0;
}
int query(int l,int r)
{
    int k=(int)(log((double)(r-l+1))/log(2.0));
    return(min(f[l][k],f[r-(1<<k)+1][k]));
}
int main()
{
    while (scanf("%d",&n)!=EOF)
    {
        for (int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        rmq();
        int t;
        scanf("%d",&t);
        for (int i=0;i<t;i++)
        {
            int l,r;
            scanf("%d%d",&l,&r);
            printf("%d\n",query(l,r));
        }
    }
    return 0;
}

 

posted on 2014-03-19 10:11  武晓伟  阅读(344)  评论(0编辑  收藏  举报