Command Line Utilities
The openssl program provides a rich variety of commands, each of which often has a wealth of options and arguments. Many commands use an external configuration file for some or all of their arguments and have a -config
option to specify that file. The environment variable OPENSSL_CONF can be used to specify the location of the configuration file. If the environment variable is not specified, a default file is created in the default certificate storage area called openssl.cnf. The settings in this default configuration file depend on the flags set when the version of OpenSSL being used was built.
This article is an overview of the available tools provided by openssl. For all of the details on usage and implementation, you can find the manpages which are automatically generated from the source code at the official OpenSSL project home. Likewise, the source code itself may be found on the OpenSSL project home page, as well as on the OpenSSL Github. The main OpenSSL site also includes an overview of the command-line utilities, as well as links to all of their respective documentation.
Contents
- 1 Getting Started
- 2 Basic Tasks
- 3 Commands
- 4 Further reading
Getting Started
The entry point for the OpenSSL library is the openssl binary, usually /usr/bin/openssl on Linux. The general syntax for calling openssl is as follows:
$ openssl command [ command_options ] [ command_arguments ]
Alternatively, you can call openssl without arguments to enter the interactive mode prompt. You may then enter commands directly, exiting with either a quit
command or by issuing a termination signal with either Ctrl+C or Ctrl+D. The following is a sample interactive session in which the user invokes the prime command twice before using the quit command to terminate the session.
OpenSSL> prime -generate -bits 24 13467269 OpenSSL> prime -generate -bits 24 16651079 OpenSSL> quit
Basic Tasks
This section is a brief tutorial on performing the most basic tasks using OpenSSL. For a detailed explanation of the rationale behind the syntax and semantics of the commands shown here, see the section on Commands.
Getting Help
As mentioned previously, the general syntax of a command is openssl command [ command_options ] [ command_arguments ]
. The help command is no different, but it does have its idiosyncrasies. To view the top-level help menu, you can call openssl as follows.
$ openssl help
This query will print all of the available commands, like so:
Standard commands asn1parse ca ciphers cms crl crl2pkcs7 dgst dhparam dsa dsaparam ec ecparam ...
Note the above output was truncated, so only the first four lines of output are shown.
A help menu for each command may be requested in two different ways. First, the same command used above may be repeated, followed by the name of the command to print help for.
$ openssl help genpkey
The program will then display the valid options for the given command.
$ openssl help genpkey Usage: genpkey [options] Valid options are: -help Display this summary -out outfile Output file -outform PEM|DER output format (DER or PEM) -pass val Output file pass phrase source -paramfile infile Parameters file -algorithm val The public key algorithm -pkeyopt val Set the public key algorithm option as opt:value -genparam Generate parameters, not key -text Print the in text -* Cipher to use to encrypt the key -engine val Use engine, possibly a hardware device Order of options may be important! See the documentation.
The second way of requesting the help menu for a particular command is by using the first option in the output shown above, namely openssl command -help
. Both commands will yield the same output; the help menu displayed will be exactly the same.
$ openssl genpkey -help Usage: genpkey [options] Valid options are: -help Display this summary -out outfile Output file -outform PEM|DER output format (DER or PEM) -pass val Output file pass phrase source -paramfile infile Parameters file -algorithm val The public key algorithm -pkeyopt val Set the public key algorithm option as opt:value -genparam Generate parameters, not key -text Print the in text -* Cipher to use to encrypt the key -engine val Use engine, possibly a hardware device Order of options may be important! See the documentation.
For additional information on the usage of a particular command, the project manpages are a great source of information. Another excellent source of information is the project perldocs. perldoc is a utility included with most if not all Perl distributions, and it's capable of displaying documentation information in a variety of formats, one of which is as manpages. Not surprisingly, the project documentation is generated from the pod files located in the doc directory of the source code.
Getting Library Version Information
$ openssl version OpenSSL 1.1.1c 28 May 2019
As mentioned above, the version command's help menu may be queried for additional options like so:
$ openssl version -help Usage: version [options] Valid options are: -help Display this summary -a Show all data -b Show build date -d Show configuration directory -e Show engines directory -f Show compiler flags used -o Show some internal datatype options -p Show target build platform -r Show random seeding options -v Show library version
Using the -a option to show all version information yields the following output on my current machine:
$ openssl version -a OpenSSL 1.1.1c 28 May 2019 built on: Tue May 28 16:23:39 2019 UTC platform: linux-x86_64 options: bn(64,64) rc4(16x,int) des(int) idea(int) blowfish(ptr) compiler: gcc -fPIC -pthread -m64 -Wa,--noexecstack -march=x86-64 -mtune=generic -O2 -pipe -fno-plt -Wa,--noexecstack -D_FORTIFY_SOURCE=2 -march=x86-64 -mtune=generic -O2 -pipe -fno-plt -Wl,-O1,--sort-common,--as-needed,-z,relro,-z,now -DOPENSSL_USE_NODELETE -DL_ENDIAN -DOPENSSL_PIC -DOPENSSL_CPUID_OBJ -DOPENSSL_IA32_SSE2 -DOPENSSL_BN_ASM_MONT -DOPENSSL_BN_ASM_MONT5 -DOPENSSL_BN_ASM_GF2m -DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DKECCAK1600_ASM -DRC4_ASM -DMD5_ASM -DAES_ASM -DVPAES_ASM -DBSAES_ASM -DGHASH_ASM -DECP_NISTZ256_ASM -DX25519_ASM -DPOLY1305_ASM -DNDEBUG -D_FORTIFY_SOURCE=2 OPENSSLDIR: "/etc/ssl" ENGINESDIR: "/usr/lib/engines-1.1" Seeding source: os-specific
Generating an RSA Private Key
Generating a private key can be done in a variety of different ways depending on the type of key, algorithm, bits, and other options your specific use case may require. In this example, we are generating a private key using RSA and a key size of 2048 bits.
$ openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:2048 -out private-key.pem
To generate a password protected private key, the previous command may be slightly amended as follows:
$ openssl genpkey -aes256 -algorithm RSA -pkeyopt rsa_keygen_bits:2048 -out private-key.pem
The addition of the -aes256 option specifies the cipher to use to encrypt the private key file. For a list of available ciphers in the library, you can run the following command:
$ openssl list -cipher-algorithms
With your private key in hand, you can use the following command to see the key's details, such as its modulus and its constituent primes. Remember to change the name of the input file to the file name of your private key.
$ openssl pkey -in private-key.pem -text
The above command yields the following output in my specific case. Your output will differ but should be structurally similar.
-----BEGIN PRIVATE KEY----- MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQDZD6IMLRFk4CaF w0rhRienwuE5EZ6xFE8e3C5TVi1+d9Enhi38RgkwD7UlWxPE6AWhp5T3kfrFWdak 1lZFVPp7/btOKLjKUru15nLoA4AKYtz9W9PhsM0dyzLc6FQ6K4ReQam5pHCqI2zF 82MwE+eIAduvuqyoQLKiI608EArWZqDtMUpBJzv0UVEYvRdnMWpCwfzpI+hPJywV CcTlNCT/ctGgBKyIx+dDuZ7bR9MNmSW7GreJEbTH+R13xT3dd/JCka1+LYCl4h0q oWhFPhOkvQzmmSzUmZlAlTDQLv2eAdJIrQcsnKZ3SsIOCC/3IpqwSzpid38Ill4O xH6XIrVFAgMBAAECggEBAJ2MC0JrM8TULSHJrf/0u7O4b2DMuTIuW386sSUr17mD nfviGF6TNvf7bq++e4rgHbZHvIg1HJ9Bpdne+J86HtUARYNlazru8fAFZEGiyLzB JUV/8TpO6ZJGepR8zSWrkFgZsOddw6i6LalADy5GRDcjoiDajZdR3lZxLrv5qOQU I1vKTf4Zs2Tl3gnaJ/Il1gBHIQ9W9xUH8jPBIwj51iXwCh8H0BiDPvFkU7cHIFCP sJhGsGp6OS3uSwwQuSE+NqbuPfVilysCcwgZduknyio0QO1YfMBL6+XoKE/bFHsn N+FzzczQg9sWyiwVR+3EeI9kp4JSElNh2nqG96i4QAECgYEA76OLUGrShHb4saoP aYnBAKLEdWj5K483JdY6BSbdd5RkDbJG8ExmcbfTas/BGdKc4iVCkxV3ysxKnX18 PfxATHDLL8NMa+gGgZY5oTKUsrXEpS132HhCJ9T9LoesQjRb4kOZH8POVqm6O4Xf lCt0y1+M1eQHI1NPO9CmPBgouEUCgYEA5+F4SS8RMyYRkU/kx195fwh0hhaOElzr E8mZou3NFL/XT6/9t+2+7sMTuiQCP9zIa6s+/rrXdjWtrTcDp4WlDITas0UUgZhv YVBQBF4vhHxIVwJxnT9Gwi4XM1JlFmVHofWD71P6DRe7jSWRS3CujP3AE9vmpWMx tE1D9qLiWQECgYB445LzFYBvrKjWz4iI4CJKFNJwvGz+iXfzkXehg7KzkVtMAYSB 0rjXYzm3J2ktgq778nn8Qxc0agy2GEil6GvzY+9MgAQ8Z0do9gTKif6zjLjP7vkH bdtJxsuWPoEqwMkdgqZrfNbJp0O4pVddovJ/agtdF3R2YJ+W+DH0HOfl1QKBgFnM c2zEEYEhaQRBUHP1gXO0rouPCI4L9e2/0QPL2/QBJzzxBuzH4X1NhsI7V7OrqOIp e0fiy7Y3q369I2ko1HY4rQln4z0c72VcWOCYKQbBqrInfCBNdPWWK93wNr2pk0gh cGqqtteDLVrIBbCVfsOTMWN/cZ7y/zi4A23sPoQBAoGAEPzcIjOyoB97Pzd7iNim Gin8RkwXIiFGSHo8vAh74CKBNokThM50OUNm5T2eJ4huzPpowQ+ID1mB5EjEai9n JY9ll3cUpawiIIW/6uGTHyXfvZWNtqEYXrVJ6fcDaKcW4y3cplNj/SJaBW8HXsW7 YGHW3zHsgy7EOAOzPwlm9oE= -----END PRIVATE KEY----- RSA Private-Key: (2048 bit, 2 primes) modulus: 00:d9:0f:a2:0c:2d:11:64:e0:26:85:c3:4a:e1:46: 27:a7:c2:e1:39:11:9e:b1:14:4f:1e:dc:2e:53:56: 2d:7e:77:d1:27:86:2d:fc:46:09:30:0f:b5:25:5b: 13:c4:e8:05:a1:a7:94:f7:91:fa:c5:59:d6:a4:d6: 56:45:54:fa:7b:fd:bb:4e:28:b8:ca:52:bb:b5:e6: 72:e8:03:80:0a:62:dc:fd:5b:d3:e1:b0:cd:1d:cb: 32:dc:e8:54:3a:2b:84:5e:41:a9:b9:a4:70:aa:23: 6c:c5:f3:63:30:13:e7:88:01:db:af:ba:ac:a8:40: b2:a2:23:ad:3c:10:0a:d6:66:a0:ed:31:4a:41:27: 3b:f4:51:51:18:bd:17:67:31:6a:42:c1:fc:e9:23: e8:4f:27:2c:15:09:c4:e5:34:24:ff:72:d1:a0:04: ac:88:c7:e7:43:b9:9e:db:47:d3:0d:99:25:bb:1a: b7:89:11:b4:c7:f9:1d:77:c5:3d:dd:77:f2:42:91: ad:7e:2d:80:a5:e2:1d:2a:a1:68:45:3e:13:a4:bd: 0c:e6:99:2c:d4:99:99:40:95:30:d0:2e:fd:9e:01: d2:48:ad:07:2c:9c:a6:77:4a:c2:0e:08:2f:f7:22: 9a:b0:4b:3a:62:77:7f:08:96:5e:0e:c4:7e:97:22: b5:45 publicExponent: 65537 (0x10001) privateExponent: 00:9d:8c:0b:42:6b:33:c4:d4:2d:21:c9:ad:ff:f4: bb:b3:b8:6f:60:cc:b9:32:2e:5b:7f:3a:b1:25:2b: d7:b9:83:9d:fb:e2:18:5e:93:36:f7:fb:6e:af:be: 7b:8a:e0:1d:b6:47:bc:88:35:1c:9f:41:a5:d9:de: f8:9f:3a:1e:d5:00:45:83:65:6b:3a:ee:f1:f0:05: 64:41:a2:c8:bc:c1:25:45:7f:f1:3a:4e:e9:92:46: 7a:94:7c:cd:25:ab:90:58:19:b0:e7:5d:c3:a8:ba: 2d:a9:40:0f:2e:46:44:37:23:a2:20:da:8d:97:51: de:56:71:2e:bb:f9:a8:e4:14:23:5b:ca:4d:fe:19: b3:64:e5:de:09:da:27:f2:25:d6:00:47:21:0f:56: f7:15:07:f2:33:c1:23:08:f9:d6:25:f0:0a:1f:07: d0:18:83:3e:f1:64:53:b7:07:20:50:8f:b0:98:46: b0:6a:7a:39:2d:ee:4b:0c:10:b9:21:3e:36:a6:ee: 3d:f5:62:97:2b:02:73:08:19:76:e9:27:ca:2a:34: 40:ed:58:7c:c0:4b:eb:e5:e8:28:4f:db:14:7b:27: 37:e1:73:cd:cc:d0:83:db:16:ca:2c:15:47:ed:c4: 78:8f:64:a7:82:52:12:53:61:da:7a:86:f7:a8:b8: 40:01 prime1: 00:ef:a3:8b:50:6a:d2:84:76:f8:b1:aa:0f:69:89: c1:00:a2:c4:75:68:f9:2b:8f:37:25:d6:3a:05:26: dd:77:94:64:0d:b2:46:f0:4c:66:71:b7:d3:6a:cf: c1:19:d2:9c:e2:25:42:93:15:77:ca:cc:4a:9d:7d: 7c:3d:fc:40:4c:70:cb:2f:c3:4c:6b:e8:06:81:96: 39:a1:32:94:b2:b5:c4:a5:2d:77:d8:78:42:27:d4: fd:2e:87:ac:42:34:5b:e2:43:99:1f:c3:ce:56:a9: ba:3b:85:df:94:2b:74:cb:5f:8c:d5:e4:07:23:53: 4f:3b:d0:a6:3c:18:28:b8:45 prime2: 00:e7:e1:78:49:2f:11:33:26:11:91:4f:e4:c7:5f: 79:7f:08:74:86:16:8e:12:5c:eb:13:c9:99:a2:ed: cd:14:bf:d7:4f:af:fd:b7:ed:be:ee:c3:13:ba:24: 02:3f:dc:c8:6b:ab:3e:fe:ba:d7:76:35:ad:ad:37: 03:a7:85:a5:0c:84:da:b3:45:14:81:98:6f:61:50: 50:04:5e:2f:84:7c:48:57:02:71:9d:3f:46:c2:2e: 17:33:52:65:16:65:47:a1:f5:83:ef:53:fa:0d:17: bb:8d:25:91:4b:70:ae:8c:fd:c0:13:db:e6:a5:63: 31:b4:4d:43:f6:a2:e2:59:01 exponent1: 78:e3:92:f3:15:80:6f:ac:a8:d6:cf:88:88:e0:22: 4a:14:d2:70:bc:6c:fe:89:77:f3:91:77:a1:83:b2: b3:91:5b:4c:01:84:81:d2:b8:d7:63:39:b7:27:69: 2d:82:ae:fb:f2:79:fc:43:17:34:6a:0c:b6:18:48: a5:e8:6b:f3:63:ef:4c:80:04:3c:67:47:68:f6:04: ca:89:fe:b3:8c:b8:cf:ee:f9:07:6d:db:49:c6:cb: 96:3e:81:2a:c0:c9:1d:82:a6:6b:7c:d6:c9:a7:43: b8:a5:57:5d:a2:f2:7f:6a:0b:5d:17:74:76:60:9f: 96:f8:31:f4:1c:e7:e5:d5 exponent2: 59:cc:73:6c:c4:11:81:21:69:04:41:50:73:f5:81: 73:b4:ae:8b:8f:08:8e:0b:f5:ed:bf:d1:03:cb:db: f4:01:27:3c:f1:06:ec:c7:e1:7d:4d:86:c2:3b:57: b3:ab:a8:e2:29:7b:47:e2:cb:b6:37:ab:7e:bd:23: 69:28:d4:76:38:ad:09:67:e3:3d:1c:ef:65:5c:58: e0:98:29:06:c1:aa:b2:27:7c:20:4d:74:f5:96:2b: dd:f0:36:bd:a9:93:48:21:70:6a:aa:b6:d7:83:2d: 5a:c8:05:b0:95:7e:c3:93:31:63:7f:71:9e:f2:ff: 38:b8:03:6d:ec:3e:84:01 coefficient: 10:fc:dc:22:33:b2:a0:1f:7b:3f:37:7b:88:d8:a6: 1a:29:fc:46:4c:17:22:21:46:48:7a:3c:bc:08:7b: e0:22:81:36:89:13:84:ce:74:39:43:66:e5:3d:9e: 27:88:6e:cc:fa:68:c1:0f:88:0f:59:81:e4:48:c4: 6a:2f:67:25:8f:65:97:77:14:a5:ac:22:20:85:bf: ea:e1:93:1f:25:df:bd:95:8d:b6:a1:18:5e:b5:49: e9:f7:03:68:a7:16:e3:2d:dc:a6:53:63:fd:22:5a: 05:6f:07:5e:c5:bb:60:61:d6:df:31:ec:83:2e:c4: 38:03:b3:3f:09:66:f6:81
Keep in mind the above key was generated solely for pedagogical purposes; never give anyone access to your private keys.
Generating a Public Key
Having previously generated your private key, you may generate the corresponding public key using the following command.
$ openssl pkey -in private-key.pem -out public-key.pem -pubout
You may once again view the key details, using a slightly different command this time.
$ openssl pkey -in public-key.pem -pubin -text
The output for the public key will be shorter, as it carries much less information, and it will look something like this.
-----BEGIN PUBLIC KEY----- MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA2Q+iDC0RZOAmhcNK4UYn p8LhORGesRRPHtwuU1YtfnfRJ4Yt/EYJMA+1JVsTxOgFoaeU95H6xVnWpNZWRVT6 e/27Tii4ylK7teZy6AOACmLc/VvT4bDNHcsy3OhUOiuEXkGpuaRwqiNsxfNjMBPn iAHbr7qsqECyoiOtPBAK1mag7TFKQSc79FFRGL0XZzFqQsH86SPoTycsFQnE5TQk /3LRoASsiMfnQ7me20fTDZkluxq3iRG0x/kdd8U93XfyQpGtfi2ApeIdKqFoRT4T pL0M5pks1JmZQJUw0C79ngHSSK0HLJymd0rCDggv9yKasEs6Ynd/CJZeDsR+lyK1 RQIDAQAB -----END PUBLIC KEY----- RSA Public-Key: (2048 bit) Modulus: 00:d9:0f:a2:0c:2d:11:64:e0:26:85:c3:4a:e1:46: 27:a7:c2:e1:39:11:9e:b1:14:4f:1e:dc:2e:53:56: 2d:7e:77:d1:27:86:2d:fc:46:09:30:0f:b5:25:5b: 13:c4:e8:05:a1:a7:94:f7:91:fa:c5:59:d6:a4:d6: 56:45:54:fa:7b:fd:bb:4e:28:b8:ca:52:bb:b5:e6: 72:e8:03:80:0a:62:dc:fd:5b:d3:e1:b0:cd:1d:cb: 32:dc:e8:54:3a:2b:84:5e:41:a9:b9:a4:70:aa:23: 6c:c5:f3:63:30:13:e7:88:01:db:af:ba:ac:a8:40: b2:a2:23:ad:3c:10:0a:d6:66:a0:ed:31:4a:41:27: 3b:f4:51:51:18:bd:17:67:31:6a:42:c1:fc:e9:23: e8:4f:27:2c:15:09:c4:e5:34:24:ff:72:d1:a0:04: ac:88:c7:e7:43:b9:9e:db:47:d3:0d:99:25:bb:1a: b7:89:11:b4:c7:f9:1d:77:c5:3d:dd:77:f2:42:91: ad:7e:2d:80:a5:e2:1d:2a:a1:68:45:3e:13:a4:bd: 0c:e6:99:2c:d4:99:99:40:95:30:d0:2e:fd:9e:01: d2:48:ad:07:2c:9c:a6:77:4a:c2:0e:08:2f:f7:22: 9a:b0:4b:3a:62:77:7f:08:96:5e:0e:c4:7e:97:22: b5:45 Exponent: 65537 (0x10001)
For more information on generating keys, see the source code documentation, located in the doc/HOWTO/keys.txt file.
Generating Keys Based on Elliptic Curves
There are essentially two steps to generating a key:
- Generate the parameters for the specific curve you are using
- Use those parameters to generate the key
To see the list of curves instrinsically supported by openssl, you can use the -list_curves</t> option when calling the <tt>ecparam command.
$ openssl ecparam -list_curves secp112r1 : SECG/WTLS curve over a 112 bit prime field secp112r2 : SECG curve over a 112 bit prime field secp128r1 : SECG curve over a 128 bit prime field secp128r2 : SECG curve over a 128 bit prime field secp160k1 : SECG curve over a 160 bit prime field ...
For this example I will use the prime256v1 curve, which is an X9.62/SECG curve over a 256 bit prime field.
Generating the Curve Parameters
Having selected our curve, we now call ecparam to generate our parameters file.
$ openssl ecparam -name prime256v1 -out prime256v1.pem
Printing Parameters to Standard Out
You can print the generated curve parameters to the terminal output with the following command:
$ openssl ecparam -in prime256v1.pem -noout -text ASN1 OID: prime256v1 NIST CURVE: P-256
Printing Parameters as C Code
Analogously, you may also output the generated curve parameters as C code. The parameters can then be loaded by calling the get_ec_group_XXX() function. To print the C code to the current terminal's output, the following command may be used:
$ openssl ecparam -in prime256v1.pem -noout -C
And here are the first few lines of the corresponding output:
EC_GROUP *get_ec_group_256(void) { static unsigned char ec_p_256[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, ...
Generating the Key
With the curve parameters in hand, we are now free to generate the key. Just as with the [#Generating an RSA Private Key|RSA] example above, we may optionally specify a cipher algorithm with which to encrypt the private key. The call to generate the key using the elliptic curve parameters generated in the example above looks like this:
$ openssl genpkey -aes256 -paramfile prime256v1.pem -out private-key.pem Enter PEM pass phrase: Verifying - Enter PEM pass phrase:
Putting it All Together
The process of generation a curve based on elliptic-curves can be streamlined by calling the genpkey command directly and specifying both the algorithm and the name of the curve to use for parameter generation. In it's simplest form, the command to generate a key based on the same curve as in the example above looks like this:
$ openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256
This command will result in the generated key being printed to the terminal's output.
$ openssl genpkey -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -----BEGIN PRIVATE KEY----- MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgqqYoJGowXJ5/GTkB SRLnBMNWLoQ2RM/QxrY+bfDDGRahRANCAASPY4eTANkwIIAWhh32eoFl2YFLJSWy bdITdZ82O5JDpDijmGmJ2hepe5afek9WVqxMPYjmbTwMPO3xMGbqUiJD -----END PRIVATE KEY-----
Remember that you can specify a cipher algorithm to encrypt the key with, which something you may or may not want to do, depending on your specific use case. Here is a slightly more complete example showing a key generated with a password and written to a specific output file.
$ openssl genpkey -aes256 -algorithm EC -pkeyopt ec_paramgen_curve:P-256 -out private-key.pem Enter PEM pass phrase: Verifying - Enter PEM pass phrase:
Just as with the previous example, you can use the pkey command to inspect your newly-generated key.
$ openssl pkey -in private-key.pem -text Enter pass phrase for private-key.pem: -----BEGIN PRIVATE KEY----- MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgEO7CxgTwi0hsjdbp sXWuU2x2flLthxqXabYDOqOZCvuhRANCAAQVTLkeCBJdvMnqwZKYJxrPvTTuanrD NkyAPQCARKsQ7bVrP6ky/5uAcAvjuZB0xKCcSp7roXLWRzD/y/ik8P5R -----END PRIVATE KEY----- Private-Key: (256 bit) priv: 10:ee:c2:c6:04:f0:8b:48:6c:8d:d6:e9:b1:75:ae: 53:6c:76:7e:52:ed:87:1a:97:69:b6:03:3a:a3:99: 0a:fb pub: 04:15:4c:b9:1e:08:12:5d:bc:c9:ea:c1:92:98:27: 1a:cf:bd:34:ee:6a:7a:c3:36:4c:80:3d:00:80:44: ab:10:ed:b5:6b:3f:a9:32:ff:9b:80:70:0b:e3:b9: 90:74:c4:a0:9c:4a:9e:eb:a1:72:d6:47:30:ff:cb: f8:a4:f0:fe:51 ASN1 OID: prime256v1 NIST CURVE: P-256
For more details on elliptic curve cryptography or key generation, check out the manpages.
Base64 Encoding Strings
For simple string encoding, you can use "here string" syntax with the base64 command as below. Intuitively, the -e flag specifies the action to be encoding.
$ openssl base64 -e <<< 'Welcome to openssl wiki' V2VsY29tZSB0byBvcGVuc3NsIHdpa2kK
Similarly, the base64 command's -d flag may be used to indicate decoding mode.
$ openssl base64 -d <<< 'V2VsY29tZSB0byBvcGVuc3NsIHdpa2kK' Welcome to openssl wiki
Note: base64 line length is limited to 76 characters by default in openssl (and generated with 64 characters per line).
openssl base64 -e <<< 'Welcome to openssl wiki with a very long line that splits...' V2VsY29tZSB0byBvcGVuc3NsIHdpa2kgd2l0aCBhIHZlcnkgbG9uZyBsaW5lIHRo YXQgc3BsaXRzLi4uCg== openssl base64 -d <<< 'V2VsY29tZSB0byBvcGVuc3NsIHdpa2kgd2l0aCBhIHZlcnkgbG9uZyBsaW5lIHRoYXQgc3BsaXRzLi4uCg=='
=> NOTHING!
To be able to decode a base64 line without line feeds that exceeds the default 76 character length restriction use the -A
option.
openssl base64 -d -A <<< 'V2VsY29tZSB0byBvcGVuc3NsIHdpa2kgd2l0aCBhIHZlcnkgbG9uZyBsaW5lIHRoYXQgc3BsaXRzLi4uCg==' Welcome to openssl wiki with a very long line that splits...
It is recommended to actually split base64 strings into multiple lines of 64 characters, however, since the -A
option is buggy, particularly with its handling of long files.
Generating a File Hash
One of the most basic uses of the dgst command (short for digest) is viewing the hash of a given file. To do this, simply invoke the command with the specified digest algorithm to use. For this example, I will be hashing an arbitrary file on my system using the MD5, SHA1, and SHA384 algorithms.
$ openssl dgst -md5 primes.dat MD5(primes.dat)= 7710839bb87d2c4c15a86c2b2c805664 $ openssl dgst -sha1 primes.dat SHA1(primes.dat)= 5dfab70ce825591689f4a3f65910870a9022cd32 $ openssl dgst -sha384 primes.dat SHA384(primes.dat)= 41399bdffe6850f5a44852d967f3db415654f20dc2eb6cd231772f6ea411876d85d44091ebbc6b1f4ce8673e64617271
For a list of the available digest algorithms, you can use the following command.
$ openssl list -digest-algorithms RSA-MD4 => MD4 RSA-MD5 => MD5 RSA-MDC2 => MDC2 RSA-RIPEMD160 => RIPEMD160 RSA-SHA1 => SHA1 RSA-SHA1-2 => RSA-SHA1 ...
You can also use a similar command to see the available digest commands:
$ openssl list -digest-commands blake2b512 blake2s256 gost md4 md5 mdc2 rmd160 sha1 sha224 sha256 sha3-224 sha3-256 sha3-384 sha3-512 sha384 sha512 sha512-224 sha512-256 shake128 shake256 sm3
Below are three sample invocations of the md5, sha1, and sha384 digest commands using the same file as the dgst command invocation above.
$ openssl md5 primes.dat MD5(primes.dat)= 7710839bb87d2c4c15a86c2b2c805664 $ openssl sha1 primes.dat SHA1(primes.dat)= 5dfab70ce825591689f4a3f65910870a9022cd32 $ openssl sha384 primes.dat SHA384(primes.dat)= 41399bdffe6850f5a44852d967f3db415654f20dc2eb6cd231772f6ea411876d85d44091ebbc6b1f4ce8673e64617271
File Encryption and Decryption
The following example demonstrates a simple file encryption and decryption using the enc command. The first argument is the cipher algorithm to use for encrypting the file. For this example I carefully selected the AES-256 algorithm in CBC Mode by looking up the available ciphers and picking out the first one I saw. To see the list of available ciphers, you can use the following command.
$ openssl enc -ciphers Supported ciphers: -aes-128-cbc -aes-128-cfb -aes-128-cfb1 -aes-128-cfb8 -aes-128-ctr -aes-128-ecb -aes-128-ofb -aes-192-cbc -aes-192-cfb -aes-192-cfb1 -aes-192-cfb8 -aes-192-ctr ...
You can also use the following command:
$ openssl list -cipher-algorithms AES-128-CBC AES-128-CBC-HMAC-SHA1 AES-128-CBC-HMAC-SHA256 id-aes128-CCM AES-128-CFB AES-128-CFB1 AES-128-CFB8 AES-128-CTR ...
Having selected an encryption algorithm, you must then specify whether the action you are taking is either encryption or decryption via the -e or -d flags, respectively. The -iter flag specifies the number of iterations on the password used for deriving the encryption key. A higher iteration count increases the time required to brute-force the resulting file. Using this option implies enabling use of the Password-Based Key Derivation Function 2, usually set using the -pbkdf2 flag. We then use the -salt flag to enable the use of a randomly generated salt in the key-derivation function.
Putting it all together, you can see the command to encrypt a file and the corresponding output below. Note that the passwords entered by the user are blank, just as they would usually be in a terminal session.
$ openssl enc -aes-256-cbc -e -iter 1000 -salt -in primes.dat -out primes.enc enter aes-256-cbc encryption password: Verifying - enter aes-256-cbc encryption password:
The analogous decryption command is as follows:
$ openssl enc -aes-256-cbc -d -iter 1000 -in primes.enc -out primes.dec enter aes-256-cbc decryption password:
Commands
There are three different kinds of commands. These are standard commands, cipher commands, and digest commands. Calling the OpenSSL top-level help command with no arguments will result in openssl printing all available commands by group, sorted alphabetically.
https://wiki.openssl.org/index.php/Command_Line_Utilities