Luogu-P2627 修剪草坪

 

题目

题目链接

 

 

测试得分:  100

 

 

 

主要算法 :  单调队列优化DP

 

 

题干:

  单调队列优化DP板子

 分析

  单调队列优化DP定长连续区间最值问题模型

  代码

  70分朴素DP

#include<stdio.h>
#include<stdlib.h>
#define FORa(i,s,e) for(int i=s;i<=e;i++)
#define FORs(i,s,e) for(int i=s;i>=e;i--)
#define LL long long 
#define gc getchar()//pa==pb&&(pb=(pa=buf)+fread(buf,1,100000,stdin),stdin)?EOF:*pa++
#define File(name) freopen(name".in","r",stdin);freopen(name".out","w",stdout);

using namespace std;
char buf[100000],*pa,*pb;
inline int read();


const int N=1e6;
int n,k;
LL sum[N+1],f[N+1][2]; 
f[i][1]代表从1-i这段区间,i这个位置的奶牛选取的效率最大值
f[i][0]代表从1-i这段区间,i这个位置的奶牛不选取的效率最大值
 

inline LL max(LL fa,LL fb){return fa>fb?fa:fb;}
int main()
{
    n=read(),k=read();
    FORa(i,1,n) sum[i]=read(),sum[i]+=sum[i-1];
    FORa(i,1,n)
    {
        f[i][0]=max(f[i-1][0],f[i-1][1]); //状态转移 
        FORa(j,i-k,i-1) f[i][1]=max(f[i][1],sum[i]-sum[j]+f[j][0]);
    }
    printf("%lld",max(f[n][0],f[n][1]));
    return 0;
}
inline int read()
{
    register char c(gc);register int f(1),x(0);
    while(c<'0'||c>'9') f=c=='-'?-1:1,c=gc;
    while(c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=gc;
    return x*f;
}

  100分单调队列优化DP

#include<stdio.h>
#include<stdlib.h>
#define FORa(i,s,e) for(int i=s;i<=e;i++)
#define FORs(i,s,e) for(int i=s;i>=e;i--)
#define LL long long 
#define gc getchar()//pa==pb&&(pb=(pa=buf)+fread(buf,1,100000,stdin),stdin)?EOF:*pa++
#define File(name) freopen(name".in","r",stdin);freopen(name".out","w",stdout);

using namespace std;
char buf[100000],*pa,*pb;
inline int read();


const int N=1e6;
int n,k;
LL sum[N+1],f[N+1][2]; 

int num[N+1],head=1,tail=0;
inline LL max(LL fa,LL fb){return fa>fb?fa:fb;}
int main()
{
    n=read(),k=read();
    FORa(i,1,n) sum[i]=read(),sum[i]+=sum[i-1];
    FORa(i,1,n)
    {
        f[i][0]=max(f[i-1][0],f[i-1][1]);
        while(head<=tail&&f[num[tail]-1][0]-sum[num[tail]-1]<f[i-1][0]-sum[i-1]) tail--;
        num[++tail]=i;
        while(head<tail&&num[head]<i-k+1) head++;
        f[i][1]=f[num[head]-1][0]-sum[num[head]-1]+sum[i];
    }
    printf("%lld",max(f[n][0],f[n][1]));
    return 0;
}
inline int read()
{
    register char c(gc);register int f(1),x(0);
    while(c<'0'||c>'9') f=c=='-'?-1:1,c=gc;
    while(c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=gc;
    return x*f;
}

总结:

   确定动规模型

 

posted @ 2019-08-16 15:23  SeanOcean  阅读(204)  评论(0编辑  收藏  举报