递归

递归

前面已经介绍了关于递归调用这样一种操作,而递归程序设计是C++语言程序设计中的一种重要的方法,它使许多复杂的问题变得简单,容易解决了。递归特点是:函数或过程调用它自己本身。其中直接调用自己称为直接递归,而将A调用BB以调用A的递归叫做间接递归。

说到递归,可能我最先想到的就是Hanoi

【题目Hanoi汉诺塔问题

N个圆盘,依半径大小(半径都不同),自下而上套在A柱上,每次只允许移动最上面一个盘子到另外的柱子上去(除A柱外,还有B柱和C柱,开始时这两个柱子上无盘子),但绝不允许发生柱子上出现大盘子在上,小盘子在下的情况,现要求设计将A柱子上N个盘子搬移到C柱去的方法。

【算法分析】

    本题是典型的递归程序设计题。

    (1)N=1 时,只有一个盘子,只需要移动一次:A>C;

    (2)N=2时,则需要移动三次:

        A------ 1 ------> B,       A ------ 2 ------> C,       B ------ 1------> C. 

    (3)如果N=3,则具体移动步骤为:

 

 

 

 

假设把第3步,第4步,第7步抽出来就相当于N=2的情况(把上面2片捆在一起,视为一片):

 

 所以可按N=2”的移动步骤设计:

①如果N=0,则退出,即结束程序;否则继续往下执行;

②用C柱作为协助过渡,将A柱上的(N-1)片移到B柱上,调用过程mov(n-1, a,b,c);

③将A柱上剩下的一片直接移到C柱上;

④用A柱作为协助过渡,将B柱上的(N-1)移到C柱上,调用过程mov (n-1,b,c,a)

【参考程序】   

void mov(int n,char a,char b,char c)

//b柱作为协助过渡,将a柱上的(n)移到c柱上

{

if(n==0) return;  //如果n=0,则退出,即结束程序

mov(n-1,a,c,b);  //c柱作为协助过渡,将a柱上的(n-1)片移到b柱上

cout<<++tot<<" "<<a<<" "<<c<<endl;

mov(n-1,b,a,c);  //a柱作为协助过渡,将b柱上的(n-1)移到c柱上

}   

 

程序定义了把n片从A柱移到C柱的过程mov (n,a,c,b),这个过程把移动分为以下三步来进行:

①先调用过程mov (n-1, a, b, c),把(n-1)片从A柱移到B, C柱作为过渡柱;

②直接执行 writeln(a, -->’, c),把A柱上剩下的一片直接移到C柱上,;

③调用mov (n-1,b,c,a),把B柱上的(n-1)片从B移到C柱上,A柱是过渡柱。

对于B柱上的(n-1)片如何移到C柱,仍然调用上述的三步。只是把(n-1)当成了n,每调用一次,要移到目标柱上的片数N就减少了一片,直至减少到n=0时就退出,不再调用。exit是退出指令,执行该指令能在循环或递归调用过程中一下子全部退出来。

我们将1-10的答案输出可以发现,答案与2N次方有关,进一步发现F[n]=2^n-1,很有点意思哦

  

 

【总结】:

  1. 对发现需要递归重要的特点为,在解决一个问题时,发现可以再解决在下一层子问题,再返回相应需要的值
  2. 递归的层数一定要注意,怎样解决无限递归,设置递归边界
  3. 尽量使递归问题记录下来,以便之后递归到此可以直接返回
  4. 递归程序最好循环输出答案,一般来说可以得出递推公式,就是之后特别强的Dp状态转移方程啦

感谢各位与信奥一本通的鼎力相助!

posted @ 2019-06-04 19:19  SeanOcean  阅读(258)  评论(1编辑  收藏  举报