在此说一下本渣对莫队算法思想的一些浅薄理解
莫队算法的思想就是对真个区间的分块,然后按照每块来分别进行计算,这样最终的复杂度可以达到n*sqrt(n)
小Z的袜子是一道非常经典的题目.:题目链接http://acm.hust.edu.cn/vjudge/contest/view.action?cid=29469#problem/A
我们先对整个区间分块,然后按照左区间所在的块进行排序,如果左区间在相同的块内,则按照右区间进行排序.
如此相当于对每个左区间在相同块内的询问,我们只要右区间从最小迭代到最大即可.也就是说我们把算法的复杂度的锅让区间的左端点来背 = =,恩......
当然了,既然使用如上算法,那么显然我们要进行离线处理.
具体代码如下:
#include <cstdio> #include <iostream> #include <algorithm> #include <queue> #include <cstring> #include <cmath> #include <set> using namespace std; int n, m, a[100010], num[100010], unit; struct N { //存询问的信息 int l, r, id; bool operator < (const N &rhs) const { //先按照左端点是否所在块进行排序,然后按照右端点排序 if (l / unit == rhs.l / unit) return r < rhs.r; else return l / unit < rhs.l / unit; } } q[100010]; pair<long long, long long>ans[100010]; //储存答案 long long gcd(long long x, long long y) { if (y == 0) return x; return gcd(y, x % y); } int main() { //freopen("in.in", "r", stdin); //freopen("out.out", "w", stdout); scanf("%d %d", &n, &m); for (int i = 1; i <= n; i++) scanf("%d", &a[i]); for (int i = 0; i < m; i++) { scanf("%d %d", &q[i].l, &q[i].r); q[i].id = i; } unit = sqrt(n); sort(q, q + m); int l = 1,r = 0; long long tmp = 0; memset(num,0,sizeof(num)); for(int i=0;i<m;i++){ //迭代求答案过程 while(r < q[i].r){ r++; tmp -= (long long)num[a[r]] * (num[a[r]] - 1); num[a[r]]++; tmp += (long long)num[a[r]] * (num[a[r]] - 1); } while(r > q[i].r){ tmp -= (long long)num[a[r]] * (num[a[r]] - 1); num[a[r]]--; tmp += (long long)num[a[r]] * (num[a[r]] - 1); r--; } while(l < q[i].l){ tmp -= (long long)num[a[l]] * (num[a[l]] - 1); num[a[l]]--; tmp += (long long)num[a[l]] * (num[a[l]] - 1); l++; } while(l > q[i].l){ l--; tmp -= (long long)num[a[l]] * (num[a[l]] - 1); num[a[l]]++; tmp += (long long)num[a[l]] * (num[a[l]] - 1); } ans[q[i].id].first = tmp; ans[q[i].id].second = (long long)(q[i].r - q[i].l + 1) * (q[i].r - q[i].l); } for(int i=0;i<m;i++){ if(ans[i].first + ans[i].second == 0) { printf("0/1\n"); continue; } long long tmp = gcd(ans[i].second,ans[i].first); printf("%lld/%lld\n",ans[i].first/tmp,ans[i].second/tmp); } return 0; }